Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2024

Guest Editorial Introduction to the Special Section on Next Generation Zero-Emission Vehicles

Autores
de Castro, R; Moura, S; Esteves, RE; Corzine, K;

Publicação
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Abstract
This special section features extended versions of papers originally published in the 2022 IEEE Vehicle Power and Propulsion Conference (VPPC22), hosted by the University of California, Merced, USA. This was the first time that the VPPC took place in California, USA. It was a timely visit. California recently announced that only zero-emission vehicles (ZEVs) will be allowed to be sold in the state by 2035. Other states and countries will surely follow. The VPPC, as one of the pioneer forums dedicated to electric mobility, is in a privileged position to create and disseminate knowledge that will help our communities transition toward sustainable transportation, improving air quality and reducing greenhouse emissions.

2024

Multi-objective planning of community energy storage systems under uncertainty

Autores
Anuradha, K; Iria, J; Mediwaththe, CP;

Publicação
Electric Power Systems Research

Abstract

2024

Shaped operating envelopes: Distribution network capacity allocation for market services

Autores
Attarha, A; Noori R.A., SM; Mahmoodi, M; Iria, J; Scott, P;

Publicação
Electric Power Systems Research

Abstract

2024

Network-secure aggregator operating regions with flexible dispatch envelopes in unbalanced systems

Autores
Russell, JS; Scott, P; Iria, J;

Publicação
Electric Power Systems Research

Abstract

2024

Protection system planning in distribution networks with microgrids using a bi-level multi-objective and multi-criteria optimization technique

Autores
Reiz, C; Leite, JB; Gouveia, CS; Javadi, MS;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Microgrids are able to improve several features of power systems, such as energy efficiencies, operating costs and environmental impacts. Nevertheless, microgrids' protection must work congruently with power distribution protection to safely take all advantages. This research contributes to enable their protection by proposing a bilevel method to simultaneously solve the allocation and coordination problems, where the proposed scheme also includes local protections of distributed energy resources. The uncertainties associated with generation and loads are categorized by the k-means method, as well. The non-dominated sorting genetic algorithm II is employed in the upper-level task to solve the protection and control devices allocation problem with two opposing objectives. In the lower-level task, a genetic algorithm ensures their coordination. Protection devices include reclosers and fuses from the network, and directional relays for the point of common coupling of microgrids, while control devices consist of remote-controlled switches. In contrast to related works, local devices installed at the point of coupling of distributed generation units are considered as well, such as voltage-restrained overcurrent relays and frequency relays. The optimal solution for the decision-maker is achieved by utilizing the compromise programming technique. Results show the importance of solving the allocation and coordination problems simultaneously, achieving up to $25,000 cost savings compared to cases that solve these problems separately. The integrated strategy allows the network operator to select the optimum solution for the protective system and avoid corrective actions afterward. The results also show the viability of the islanding operation depending on the decision maker's criteria.

2024

Optimizing wind farm cable layout considering ditch sharing

Autores
Cerveira, A; de Sousa, A; Pires, EJS; Baptista, J;

Publicação
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Wind power is becoming an important source of electrical energy production. In an onshore wind farm (WF), the electrical energy is collected at a substation from different wind turbines through electrical cables deployed over ground ditches. This work considers the WF layout design assuming that the substation location and all wind turbine locations are given, and a set of electrical cable types is available. The WF layout problem, taking into account its lifetime and technical constraints, involves selecting the cables to interconnect all wind turbines to the substation and the supporting ditches to minimize the initial investment cost plus the cost of the electrical energy that is lost on the cables over the lifetime of the WF. It is assumed that each ditch can deploy multiple cables, turning this problem into a more complex variant of previously addressed WF layout problems. This variant turns the problem best fitting to the real case and leads to substantial gains in the total cost of the solutions. The problem is defined as an integer linear programming model, which is then strengthened with different sets of valid inequalities. The models are tested with four WFs with up to 115 wind turbines. The computational experiments show that the optimal solutions can be computed with the proposed models for almost all cases. The largest WF was not solved to optimality, but the final relative gaps are small.

  • 3
  • 315