Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2023

Adjustable Price-Sensitive DER Bidding within Network Envelopes

Autores
Attarha, A; Mahmoodi, M; R.A., SMN; Scott, P; Iria, J; Thiébaux, S;

Publicação
IEEE Transactions on Energy Markets, Policy and Regulation

Abstract

2023

DSO framework to handle high participation of DER in electricity markets

Autores
Fonseca, NS; Soares, F; Coelho, A; Iria, J;

Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This paper proposes a new decentralized framework for distribution system operators (DSO) to evaluate the network feasibility of the aggregators' bids and remunerate them in case of providing network support services. Compared to other state-of-the-art approaches, this framework is characterized as being more efficient in terms of communication and computational requirements, which is a great advantage for real world applications. The new framework includes a novel optimization model to decide if aggregators' bids should be curtailed or not to ensure network security and minimize DSO costs. To evaluate and compare the proposed DSO framework against the current one, we used the IEEE 69-bus network with three aggregators of distributed energy resources (DER) from the Iberian electricity market. Our experiments show that the proposed DSO framework ensures distribution network security, while the current framework in place in the Iberian Peninsula does not. In addition, we also studied three curtailment policies for the new DSO framework. The results show that minimizing curtailment costs is the most cost-effective policy for the DSO, compared to the other two policies focused on minimizing linear and squared curtailments.

2023

Robust Operating Envelopes with Phase Unbalance Constraints in Unbalanced Three-Phase Networks

Autores
Russell, JS; Scott, P; Iria, J;

Publicação
2023 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia)

Abstract

2023

Behind-the-Meter Solar Disaggregation: The Value of Information

Autores
R.A, SMN; Mahmoodi, M; Attarha, A; Iria, J; Scott, P; Gordon, D;

Publicação
2023 IEEE PES 15th Asia-Pacific Power and Energy Engineering Conference (APPEEC)

Abstract

2023

A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services

Autores
Rocha, R; Silva, R; Mello, J; Faria, S; Retorta, F; Gouveia, C; Villar, J;

Publicação
ENERGIES

Abstract
This paper proposes a three-stage model for managing energy communities for local energy sharing and providing grid flexibility services to tackle local distribution grid constraints. The first stage addresses the minimization of each prosumer's individual energy bill by optimizing the schedules of their flexible resources. The second stage optimizes the energy bill of the whole energy community by sharing the prosumers' energy surplus internally and re-dispatching their batteries, while guaranteeing that each prosumer's new energy bill is always be equal to or less than the bill that results for this prosumer from stage one. This collective optimization is designed to ensure an additional collective benefit, without loss for any community member. The third stage, which can be performed by the distribution system operator (DSO), aims to solve the local grid constraints by re-dispatching the flexible resources and, if still necessary, by curtailing local generation or consumption. Stage three minimizes the impact on the schedule obtained at previous stages by minimizing the loss of profit or utility for all prosumers, which are furthermore financially compensated accordingly. This paper describes how the settlement should be performed, including the allocation coefficients to be sent to the DSO to determine the self-consumed and supplied energies of each peer. Finally, some case studies allow an assessment of the performance of the proposed methodology. Results show, among other things, the potential benefits of allowing the allocation coefficients to take negative values to increase the retail market competition; the importance of stage one or, alternatively, the need for a fair internal price to avoid unfair collective benefit sharing among the community members; or how stage three can effectively contribute to grid constraint solving, profiting first from the existing flexible resources.

2023

Flexibility Modeling and Trading in Renewable Energy Communities

Autores
Agrela, J; Rezende, I; Soares, T; Gouveia, C; Silva, R; Villar, J;

Publicação
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This work presents an approach to the flexibility of energy consumption in Renewable Energy Communities (RECs). A two-stage model for quantifying the flexibility provided by the domestic energy resources operation and its negotiation in a market platform is proposed. In stage 1, the optimal consumption of each prosumer is determined, as well as the respective technical flexibility of their resources, namely the maximum and minimum resource operation limits. In stage 2, this technical flexibility is offered in a local flexibility-only market structure, in which both the DSO and the prosumers can present their flexibility needs and requirements. The flexibility selling and buying bids of the prosumers participating in the market are priced based on their base tariff, which is the energy cost of the prosumers corresponding to their optimal schedule of the first stage when no flexibility is provided. Therefore, providing flexibility is an incentive to reduce their energy bill or increase their utility, encouraging their participation in the local flexibility market.

  • 33
  • 336