Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2022

MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets

Autores
Iria, J; Scott, P; Attarha, A; Gordon, D; Franklin, E;

Publicação
Energy

Abstract

2022

A Multiobjective Approach for the Optimal Placement of Protection and Control Devices in Distribution Networks With Microgrids

Autores
REIZ, C; DE LIMA, TD; LEITE, JB; JAVADI, MS; GOUVEIA, CS;

Publicação
IEEE ACCESS

Abstract
Protection and control systems represent an essential part of distribution networks by ensuring the physical integrity of components and by improving system reliability. Protection devices isolate a portion of the network affected by a fault, while control devices reduce the number of de-energized loads by transferring loads to neighboring feeders. The integration of distributed generation has the potential to enhance the continuity of energy services through islanding operation during outage conditions. In this context, this study presents a multi-objective optimization approach for sizing and allocating protection and control devices in distribution networks with microgrids supplied by renewable energy sources. Reclosers, fuses, remote-controlled switches, and directional relays are considered in the formulation. Demand and generation uncertainties define the islanding operation and the load transfer possibilities. A non-dominated sorting genetic algorithm is applied in the solution of the allocation problem considering two conflicting objectives: cost of energy not supplied and equipment cost. The compromise programming is then performed to achieve the best solution from the Pareto front. The results show interesting setups for the protection system and viability of islanding operation.

2022

Optimal Allocation of Protection and Control Devices in Distribution Networks with Microgrids

Autores
Reiz, C; de Lima, TD; Leite, JB; Javadi, MS; Gouveia, CS;

Publicação
2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022)

Abstract
Protection and control systems represent an essential part of distribution networks, ensuring the physical integrity of components and improving system reliability. Protection devices isolate a portion of the network affected by a fault, while control devices reduce the number of de-energized loads by transferring loads to neighboring feeders. The integration of distributed generation has the potential to improve the continuity of energy services through islanding operation during outage conditions. In this context, this paper presents a multi-objective optimization approach for the size and allocation of protection and control devices in distribution networks with microgrids supplied by renewable energy sources. Reclosers, fuses, remote-controlled switches, and directional relays are considered in the formulation. The demand and generation uncertainties define the islanding operation and the load transfer possibilities. A genetic algorithm is presented to solve the allocation problem. The compromise programming is performed to choose the best solution from the Pareto front. Results show interesting setups for the protection system and viability of islanding operation.

2022

Wind Energy Assessment for Small Wind Turbines in Different Roof Shapes Based on CFD Simulations

Autores
Oliveira, C; Cerveira, A; Baptista, J;

Publicação
SUSTAINABLE SMART CITIES AND TERRITORIES

Abstract
With a still high rate of use of energy from non-renewable sources, it is crucial that new energy generation solutions are adopted to reach greenhouse gas reduction targets. The integration of renewable energy sources in buildings is an interesting solution that allows reducing the need for energy from the power grid, contributing to a significant increase in the energy efficiency of buildings. The main aim of this paper is to evaluate the impact that the aerodynamics of the buildings in particular the roof shape has considering the integration of wind energy systems. The results of Computational Fluid Dynamics (CFD) simulations are presented in order to identify the effect of the two roof shapes on energy production by wind turbines (WT). For this purpose, the factor matrices (FM) that gives information about the wind profile around the building taking into account the building's roof profile were calculated. Comparing the results for the wind flow obtained by the FM and the CFD simulations for the flat and gabled roofs, similarities are observed for them, allowing to conclude that the CFD analysis results in a methodology with great accuracy for the aerodynamic study of buildings roof shape.

2022

State of the Art of Wind and Power Prediction for Wind Farms

Autores
Puga, R; Baptista, J; Boaventura, J; Ferreira, J; Madureira, A;

Publicação
INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021

Abstract
There are different clean energy production technologies, including wind energy production. This type of energy, among renewable energies, is one of the least predictable due to the unpredictability of the wind. The wind prediction has been a deeply analysed field since has a considerable share on the green energy production, and the investments on this sector are growing. The efficiency and stability of power production can be increased with a better prediction of the main source of energy, in our case the wind. In this paper, some techniques inspired by Biological Inspired Optimization Techniques applied to wind forecast are compared. The wind forecast is very important to be able to estimate the electric energy production in the wind farms. As you know, the energy balance must be checked in the electrical system at every moment. In this study we are going to analyse different methodologies of wind and power prediction for wind farms to understand the method with best results.

2022

Supraharmonic and Harmonic Emissions of a Bi-Directional V2G Electric Vehicle Charging Station and Their Impact to the Grid Impedance

Autores
Grasel, B; Baptista, J; Tragner, M;

Publicação
ENERGIES

Abstract
Bidirectional electric vehicle supply equipment and charging stations (EVSE) offer new business models and can provide services to the electrical grid. The smart grid lab in Vienna gives unique testing possibilities of future smart grids, as different type of electrical equipment can be operated at a reconstructed, well-known distribution grid. In this work the harmonic and supraharmonic emissions of a bidirectional EVSE are measured according to IEC61000-4-7 and IEC61000-4-30 Ed3 standard as well as the high-frequency grid impedance. In addition, the efficiency and the power factor are determined at various operating points. Although THDi at nominal power (10 kW) is very low and the efficiency and power factor is very high, at low power levels the opposite situation arise. Supraharmonic emissions remain stable independent of the charging/discharging power, and both wideband and narrowband emissions occur. The additional capacitance when connecting the EVSE impacts the high-frequency grid impedance substantially and generates resonance points.

  • 35
  • 316