Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2022

Indoor location infrastructure for time management tools: a case study

Autores
Teixeira, A; Silva, H; Araujo, RE;

Publicação
Proceedings - 2022 International Young Engineers Forum in Electrical and Computer Engineering, YEF-ECE 2022

Abstract
Indoor localization systems are an important topic in the field of manufacturing process. A computational infrastructure based on Bluetooth low energy technology with state estimators for filtering is used to localize employees in the shop floor. The researchers' motivation is two-folds: implement an indoor tracking system while promoting manage production time. In this paper, we discuss the first prototype of a localization system adapted to address these goals. Experimental results show that the system for our case study, achieves a localization accuracy of less than three meters. © 2022 IEEE.

2022

qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems

Autores
de Castro, R; Pereira, H; Araujo, RE; Barreras, JV; Pangborn, HC;

Publicação
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Abstract
This work deals with the design and validation of a control strategy for hybrid balancing systems (HBSs), an emerging concept that joins battery equalization and hybridization with supercapacitors (SCs) in the same system. To control this system, we propose a two-layer model predictive control (MPC) framework. The first layer determines the optimal state-of-charge (SoC) reference for the SCs considering long load forecasts and simple pack-level battery models. The second MPC layer tracks this reference and performs charge and temperature equalization, employing more complex module-level battery models and short load forecasts. This division of control tasks into two layers, running at different time scales and model complexities, enables us to reduce computational effort with a small loss of control performance. Experimental validation in a small-scale laboratory prototype demonstrates the effectiveness of the proposed approach in reducing charge, temperature, and stress in the battery pack.

2022

Linear and nonlinear systems in continuous time: application to power converters

Autores
Silveira, AM; de Castro, R; Araújo, RE;

Publicação
Encyclopedia of Electrical and Electronic Power Engineering: Volumes 1-3

Abstract
Modeling is a key step in the design of energy and control systems. It allows us to simulate and predict the behavior of electronics converters, even before constructing them. This is instrumental, for example, for sizing, component selection and preliminary validation of the converter's functionality. It also enables us to design model-based controllers for the converter and regulate the amount of transferred power, which can be done using simulation tools. This article introduces the main tools employed in the mathematical modeling of power converters, with a particular focus on linear approximations and average models. © 2023 Elsevier Inc. All rights reserved.

2022

Properties and control stability analysis of linear and nonlinear systems: applications to power converters

Autores
de Castro, R; Silveira, AM; Araújo, RE;

Publicação
Encyclopedia of Electrical and Electronic Power Engineering: Volumes 1-3

Abstract
The goal of this article is to introduce the fundamental notions and concepts of stability analysis for linear and nonlinear systems in the context of electronic power conversion. Power electronic circuits have strong nonlinear behavior in their essence; often we need to linearize them to understand their properties and study their stability with the applied control laws. We present different concepts of stability (internal, input-output, Lyapunov-based), observability and controllability, as well as practical tests to check these properties. We then apply these tests in the context of a single power converter example, a DC/DC boost converter. © 2023 Elsevier Inc. All rights reserved.

2022

Core Loss Distribution in a Switched Reluctance Motor - Linear and Nonlinear Analysis

Autores
Melo, P; Araujo, RE;

Publicação
2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC)

Abstract
Switched reluctance machines (SRM) are simple, robust and fault tolerant machines, usually operating under strong nonlinear characteristics. Hence, SRM modeling is a most demanding task, in particular core losses. Non-sinusoidal flux density waveforms in different stator and rotor core sections, in addition to lamination non-uniform distribution are challenging phenomena to be addressed. This is still an ongoing research field. The purpose of this paper is to develop a comparative analysis between a linear and non-linear simulation model for core loss distribution in a three-phase 6/4 SRM. Five different steady-state operation modes will be addressed.

2022

MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets

Autores
Iria, J; Scott, P; Attarha, A; Gordon, D; Franklin, E;

Publicação
Energy

Abstract

  • 45
  • 331