2025
Autores
Marco Mussi; Alberto Maria Metelli; Marcello Restelli; Gianvito Losapio; Ricardo J. Bessa; Daniel Boos; Clark Borst; Giulia Leto; Alberto Castagna; Ricardo Chavarriaga; Duarte Dias; Adrian Egli; Andrina Eisenegger; Yassine El Manyari; Anton Fuxjäger; Joaquim Geraldes; Samira Hamouche; Mohamed Hassouna; Bruno Lemetayer; Milad Leyli-Abadi; Roman Liessner; Jonas Lundberg; Antoine Marot; Maroua Meddeb; Viola Schiaffonati; Manuel Schneider; Thilo Stadelmann; Julia Usher; Herke Van Hoof; Jan Viebahn; Toni Waefler; Giacomo Zanotti;
Publicação
iScience
Abstract
Artificial Intelligence (AI) is transforming every aspect of modern society. It demonstrates a high potential to contribute to more flexible operations of safety-critical network infrastructures under deep transformation to tackle global challenges, such as climate change, energy transition, efficiency, and digital transformation, including increasing infrastructure resilience to natural and human-made hazards. The widespread adoption of AI creates the conditions for a new and inevitable interaction between humans and AI-based decision systems. In such a scenario, creating an ecosystem in which humans and AI interact healthily, where the roles and positions of both actors are well-defined, is a critical challenge for research and industry in the coming years. This perspective article outlines the challenges and requirements for effective human-AI interaction by taking an interdisciplinary point of view that merges computer science, decision-making sciences, psychological constructs, and industrial practices. The work focuses on three emblematic safety-critical scenarios from two different domains: energy (power grids) and mobility (railway networks and air traffic management). © 2025 Elsevier B.V., All rights reserved.
2025
Autores
Bost, L; Fernandes, FS; Bessa, RJ;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
The increasing penetration of renewable energy sources in power systems has heightened the importance of grid-forming (GFM) converters, which emulate the dynamic behavior of synchronous machines and are crucial for ensuring stability in converter-dominated grids. However, the complexity of modern grids calls for innovative control mechanisms to unlock the full potential of GFM technology. This work presents a novel automated framework for control design in power systems. Simulated annealing is used to evolve the structural design of control systems represented as graph-based models. The method achieves greater flexibility by using control graphs instead of traditional tree-based representations, supporting complex feedback loop configurations. A simplification process is also included to reduce complexity and improve interpretability, ensuring practical applicability. Validation on a two-generator power system with one GFM converter demonstrates the method's ability to design robust controllers that enhance system stability, achieving better performance metrics, such as smoother frequency responses with significantly reduced frequency deviations compared to benchmark configurations. The improved frequency response arises from differing terminal angle profiles, enabling faster, stronger power responses that quickly arrest frequency deviations during disturbances.
2025
Autores
Silva, CAM; Watson, C; Bessa, RJ;
Publicação
2025 21ST INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM
Abstract
The electrification of transportation, driven by the widespread adoption of electric vehicles and increased integration of renewable energy, is critical to decarbonizing mobility and society. Demand response strategies, such as dynamic pricing, enable indirect control of charging processes, but their success relies on accurately estimating consumer responses to tariff changes. Observational data can provide insights into consumer behavior, but the presence of confounding variables motivates the use of causal inference techniques for a reliable elasticity estimation. This study proposes a data-driven framework for optimizing day-ahead charging tariffs, leveraging causal discovery and inference algorithms validated on a synthetically generated dataset. A sensitivity analysis explores the impact of data availability on elasticity estimation and the performance of the resulting demand response strategy. The findings highlight the potential of causal machine learning to characterize consumers and, ultimately, the need for regular characterization to improve the efficiency of demand-side management.
2025
Autores
Reiz, C; Gouveia, C; Bessa, RJ; Lopes, JP; Kezunovic, M;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
Increased electrification of various critical infrastructures has been recognized as a key to achieving decarbonization targets worldwide. This creates a need to better understand the risks associated with future power systems and how such risks can be defined, assessed, and mitigated. This paper surveys prior work on power system risk assessment and management and explores the various approaches to risk definition, assessment, and mitigation. As a result, the paper proposes how future grid developments should be assessed in terms of risk causes, what methodology may be used to reduce the risk impacts, and how such approaches can increase grid resilience. While we attempt to generalize and classify various approaches to solving the problem of risk assessment and mitigation, we also provide examples of how specific approaches undertaken by the authors in the past may be expanded in the future to address the design and operation of the future electricity system to manage the risk more effectively. The importance of the metrics for risk assessment and methodology for quantification of risk reduction are illustrated through the examples. The paper ends with recommendations on addressing the risk and resilience of the electricity system in the future resilient implementation while achieving decarbonization goals through massive electrification.
2025
Autores
Klyagina O.; Silva C.G.; Silva A.S.; Guedes T.; Andrade J.R.; Bessa R.J.;
Publicação
2025 IEEE Kiel Powertech Powertech 2025
Abstract
A fast response to faults in large-scale photovoltaic power plants (PVPPs), which can occur on hundreds of components like photovoltaic panels and inverters, is fundamental for maximizing energy generation and reliable system operation. This work proposes using a Graph Neural Network (GNN) combined with a digital twin for synthetic fault data scenario generation for fault location in PVPPs. It shows that GNN can adapt to system changes without requiring model retraining, thus offering a scalable solution for the real operating PVPPs, where some parts of the system may be disconnected for maintenance. The results for a real PVPP show the GNN outperforms baseline models, especially in larger topologies, achieving up to twice the accuracy in a fault location task. The GNN's adaptability to topology changes was tested on the simulated reconfigured systems. A decrease in performance was observed, and its value depends on the complexity of the original training topology. It can be mitigated by using several system reconfigurations in the training set.
2025
Autores
Paulos J.; Silva P.R.; Bessa R.J.; Marot A.; Dejaegher J.; Donnot B.;
Publicação
2025 IEEE Kiel Powertech Powertech 2025
Abstract
With the growing need for AI-driven solutions in power grid management, this work addresses the challenge of creating realistic synthetic operating scenarios essential for developing, testing, and validating AI-based decision-making systems. It uses spatial-temporal noise functions, predefined patterns, and optimal power flow to model renewable energy and conventional power plant generation, load, and losses. Quantitative and visual key performance indicators are proposed to evaluate the quality of the generated operating scenarios, and the validation highlights the framework's ability to emulate diverse and practical operating scenarios, bridging gaps in AI-driven power system research and real-world applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.