Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CPES

2025

Speed Control of Switched Reluctance Motor with Torque Ripple Reduction Based on Super-Twisting Sliding Mode Control

Autores
Z. Touati; R.E. Araújo;

Publicação
IFAC-PapersOnLine

Abstract

2025

A New Design for an Electrolyzer Power Converter Architecture Capable of Fault Ride Through

Autores
Elhawash, M; Araújo, RE; Lopes, A;

Publicação
2025 IEEE Kiel PowerTech

Abstract
This paper presents a new power chain and its control scheme that provides highly flexible low voltage ride through (LVRT) capabilities for power converters that feed the stack of Polymer Electrolyte Membrane (PEM) hydrogen electrolyzers. It introduces an intermediate power stage with a new adaptive feedforward controller, that isolates the electrolyzer stack from grid-side disturbances. An RMS model of the whole solution is developed and validated. The system was developed in MATLAB/SIMULINK and PLECS environments. Furthermore, the system was tested in DC and AC grids by subjecting it to a fault reducing the input voltage magnitude down to 0.2 pu. The system demonstrated its ability to ride through the fault whilst maintaining the power set-points and supply quality at the electrolyzer stack connection point. © 2025 Elsevier B.V., All rights reserved.

2025

A multi-objective stochastic optimization framework for government-run community energy storage systems auctions

Autores
Anuradha K.B.J.; Iria J.; Mediwaththe C.P.;

Publicação
Journal of Energy Storage

Abstract
This paper proposes a multi-objective stochastic optimization framework that can be used by governments to run auctions and select the best community energy storage system (CESS) projects to support. The framework enables CESS providers and energy community members to equitably benefit from the economic value generated by CESSs. The auction accepts offers from competing CESS providers that constitute the data of the CESS location, size, install time, technology, provider, investment cost, and energy trading price. The auction is run by a government agency which selects CESS projects that maximize the economic benefits and distribute them equitably among CESS providers and community members. The multi-objective stochastic optimization accounts for the multi-year uncertainties of photovoltaic (PV) generation, real and reactive energy consumption, energy trading prices, and PV installations. We exploit the Monte Carlo simulation and scenario trees to model the aforementioned uncertainties. The K-Means clustering method is used to reduce the number of scenarios, and thereby, lessen the computational burden of the optimization problem. Our experiments on an Australian low-voltage network with a community of prosumers and consumers demonstrate that government financial support can accelerate the installation of CESSs and enhance their business viability. This can be achieved by boosting the economic benefits shared between CESS providers and communities and ensuring these benefits are distributed equitably. Also, our experiments show that the economic benefits of all stakeholders are further improved with a high growth of the number of PV installations, and a slight reduction of energy import and export prices over the planning period.

2025

Adaptive Protection Strategies for Multi-Microgrid Systems: Enhancing Resilience and Reliability in Medium Voltage Distribution Networks

Autores
Habib H.U.R.; Reiz C.; Alves E.; Gouveia C.S.;

Publicação
2025 IEEE Kiel Powertech Powertech 2025

Abstract
This paper presents an adaptive protection strategy for multi-microgrid (MMG) systems with inverter-based resources (IBRs) in medium voltage (MV) networks, using the IEEE 33-bus test system. The approach combines overcurrent (OC) and undervoltage (UV) protections through an offline-optimized, clustering-based scheme and real-time selection of setting groups. A metaheuristic algorithm determines optimal relay settings for representative scenarios, ensuring responsive and coordinated protection. Hardware-in-the-loop validation on OPAL-RT confirms the method's effectiveness across varying loads, DER outputs, and fault conditions. Results demonstrate reliable fault isolation, smooth mode transitions, and uninterrupted supply to healthy segments. Identified limitations in high-impedance fault handling suggest future improvements.

2025

AI-Assisted Adaptive Protection for Medium Voltage Distribution Networks: A Two-Phase Application Proposal with HIL Testing

Autores
Alves, E; Reiz, C; Gouveia, CS;

Publicação
2025 IEEE Kiel PowerTech

Abstract
The increasing penetration of inverter-based resources (IBR) in medium voltage (MV) networks presents significant challenges for traditional overcurrent (OC) protection systems, particularly in ensuring selectivity, reliability, and fault isolation. This paper presents an adaptive protection system (APS) that dynamically adjusts protection settings based on real-time network conditions, addressing the challenges posed by distributed energy resources (DER). The methodology builds on ongoing research and development efforts, combining an offline phase, where operational scenarios are simulated using historical data, clustered with fuzzy c-means (FCM), and optimized with evolutionary particle swarm optimization (EPSO), and an online phase. To overcome the static nature of conventional schemes, a machine learning (ML)-based classifier is integrated into the APS, enabling real-time adaptation of protection settings. In the online phase, a centralized substation protection controller (CPC) leverages real-time measurements, communicated via IEC 61850 standard protocols, to classify network conditions using a support vector machine (SVM) classifier and activate the appropriate protection settings. The proposed APS has been validated on a Hardware-in-the-Loop (HIL) platform, demonstrating significant improvements in fault detection times, selectivity, and reliability compared to traditional OC protection systems. As part of a continued effort to refine and expand the system's capabilities, this work highlights the potential of integrating artificial intelligence (AI) and real-time/online decision-making to enhance the adaptability and robustness of MV network protection in scenarios with high DER penetration. © 2025 Elsevier B.V., All rights reserved.

2025

Generative Adversarial Networks for Synthetic Meteorological Data Generation

Autores
Viana, D; Teixeira, R; Soares, T; Baptista, J; Pinto, T;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT II

Abstract
This study explores models for synthetic data generation of time series. In order to improve the achieved results, i.e., the data generated, new ways of improvement are explored and different models of synthetic data generation are compared. The model addressed in this work is the Generative Adversarial Networks (GANs), known for generating data similar to the original basis data through the training of a generator. The GANs are applied using the datasets of Quinta de Santa Barbara and the Pinhao region, with the main variables being the Average temperature, Wind direction, Average wind speed, Maximum instantaneous wind speed and Solar radiation. The model allowed to generate missing data in a given period and, in turn, enables to analyze the results and compare them with those of a multiple linear regression method, being able to evaluate the effectiveness of the generated data. In this way, through the study and analysis of the GANs we can see if the model presents effectiveness and accuracy in the synthetic generation of meteorological data. With the proper conclusions of the results, this information can be used in order to improve the search for different models and the ability to generate synthetic time series data, which is representative of the real, original, data.

  • 5
  • 362