Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Augusto Sousa

2016

37th Annual Conference of the European Association for Computer Graphics, Eurographics 2016 - Tutorials, Lisbon, Portugal, May 9-13, 2016

Autores
de Sousa, AA; Bouatouch, K;

Publicação
Eurographics (Tutorials)

Abstract

2024

Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 4: VISAPP, Rome, Italy, February 27-29, 2024

Autores
Radeva, P; Furnari, A; Bouatouch, K; de Sousa, AA;

Publicação
VISIGRAPP (4): VISAPP

Abstract

2024

Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 3: VISAPP, Rome, Italy, February 27-29, 2024

Autores
Radeva, P; Furnari, A; Bouatouch, K; de Sousa, AA;

Publicação
VISIGRAPP (3): VISAPP

Abstract

2024

Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 2: VISAPP, Rome, Italy, February 27-29, 2024

Autores
Radeva, P; Furnari, A; Bouatouch, K; de Sousa, AA;

Publicação
VISIGRAPP (2): VISAPP

Abstract

2024

Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2024, Volume 1: GRAPP, HUCAPP and IVAPP, Rome, Italy, February 27-29, 2024

Autores
Rogers, TB; Méneveaux, D; Ziat, M; Ammi, M; Jänicke, S; Purchase, HC; Bouatouch, K; de Sousa, AA;

Publicação
VISIGRAPP (1): GRAPP, HUCAPP, IVAPP

Abstract

2024

AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in Computer Vision for Autonomous Mobile Robots

Autores
Ferreira, BG; de Sousa, AJM; Reis, LP; de Sousa, AA; Rodrigues, R; Rossetti, R;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III

Abstract
This article proposes the Artificial Intelligence Models Switching Mechanism (AIMSM), a novel approach to optimize system resource utilization by allowing systems to switch AI models during runtime in dynamic environments. Many real-world applications utilize multiple data sources and various AI models for different purposes. In many of those applications, every AI model doesn’t have to operate all the time. The AIMSM strategically allows the system to activate and deactivate these models, focusing on system resource optimization. The switching of each AI model can be based on any information, such as context or previous results. In the case study of an autonomous mobile robot performing computer vision tasks, the AIMSM helps the system to achieve a significant increment in performance, with a 50% average increase in frames per second (FPS) rate, for this specific case study, assuming that no erroneous switching occurred. Experimental results have demonstrated that the AIMSM can improve system resource utilization efficiency when properly implemented, optimize overall resource consumption, and enhance system performance. The AIMSM presented itself as a better alternative to permanently loading all the models simultaneously, improving the adaptability and functionality of the systems. It is expected that using the AIMSM will yield a performance improvement that is particularly relevant to systems with multiple AI models of a complex nature, where such models do not need to be all continuously executed or systems that will benefit from lower resource usage. Code is available at https://github.com/BrunoGeorgevich/AIMSM. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 13
  • 14