2022
Autores
Silva, B; Ribeiro, M; Henriques, TS;
Publicação
2022 10th E-Health and Bioengineering Conference, EHB 2022
Abstract
Physiological signals offer a vast amount of information about the well-being of the human system. Understanding the behavior and complexity of these signs is important for accurate assessments and diagnoses. This study focuses on fetal heart rate (FHR) analysis and its potential to detect perinatal asphyxia by analyzing how different representations of the FHR series could aid in asphyxia detection. Additionally, different compression schemes were applied to evaluate the potential of compression as a measure of complexity. For this purpose, text files containing data of the last hour of the FHR before birth were converted into different types of images (Time Series, Time Series with fixed axes, Recurrence Plot and Poincaré Plot). We then applied compression schemes for text (BZIP2 and GZIP) and images (Lempel-Ziv-Welch, DEFLATE, and JPG) in 5, 10, and 30-minute windows. Correlation analysis revealed that similar compressed formats, such as BZIP2/GZIP and TIFF LZW/TIFF DEFLATE/JPG LOSSY/JPG LOSSLESS, showed the highest values and the correlation between uncompressed and compressed formats became increasingly more negative for larger time windows. Mann-Whitney test between groups (with and without asphyxia) revealed that compressed patterned images, such as Recurrence Plots, showed the highest potential in detecting asphyxia. Moreover, we confirm that larger time windows allow for better detection, due to the presence of more detailed patterns. These findings confirmed the potential of time series image representation in detecting fetal conditions, as well as show that the compression of images leads to better results than the compression of text files. © 2022 IEEE.
2022
Autores
Sousa, H; Ribeiro, M; Henriques, TS;
Publicação
2022 10th E-Health and Bioengineering Conference, EHB 2022
Abstract
Neonatal sepsis is characterized by the system’s extreme response to an infection and persists as one of the biggest life-threatening diseases. The gold standard treatment is administrating an antibiotic, which, unfortunately, is often made too late. The diagnosis should be easier, faster, and achieved through non-invasive methods. Recently, entropy, a non-linear feature, has been applied to different physiological signals to detect diseases having very promising results. In this study, several entropy measures were applied to the breathing cycle duration (TTot) of the respiratory signals for 20 neonates. In total, 18 distinct methods of entropy were initially applied to 30-minute segments. Using Spearman’s correlation, it was detected strong correlation similarities between some of the measures. On the other hand, bubble, attention, phase, and spectral entropies were negatively correlated with all the other measures. To detect the presence of Sepsis, the slope of the multiscale entropy index was analyzed. Also, a changing point in the slope was probed, when possible, and then was applied linear regression to two subsets of data, before and after the changing point. Effectively, the Wilcoxon Sign Rank Test showed that the results for the total slope of the Sample, Corrected Conditional, Distribution, Permutation, Fuzzy, Gridded Distribution, Incremental, and Entropy of Entropy were statistically significant to infer that entropy decreases with time. Nonetheless, further work should confirm these results with a larger dataset that includes healthy and pathological neonates. © 2022 IEEE.
2022
Autores
Mukhandi M.; Damiao F.; Granjal J.; Vilela J.P.;
Publicação
Proceedings - IEEE Consumer Communications and Networking Conference, CCNC
Abstract
To decrease the IoT attack surface and provide protection against security threats such as introduction of fake IoT nodes and identity theft, IoT requires scalable device identity and authentication management. This work proposes a blockchain-based identity management approach with consensus authentication as a scalable solution for IoT device authentication management. The proposed approach relies on having a blockchain secure tamper proof ledger and a novel lightweight consensus-based identity authentication. The results show that the proposed decentralised authentication system is scalable as we increase number of nodes.
2022
Autores
Mendes, R; Brandao, A; Vilela, JP; Beresford, AR;
Publicação
2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM)
Abstract
Runtime permission managers for mobile devices allow requests to be performed at the time in which permissions are required, thus enabling the user to grant/deny requests in context according to their expectations. However, in order to avoid cognitive overload, second and subsequent requests are usually automatically granted without user intervention/awareness. This paper explores whether these automated decisions fit user expectations. We performed a field study with 93 participants to collect their privacy decisions, the surrounding context and whether each request was expected. The collected 65261 permission decisions revealed a strong misalignment between apps' practices and expectation as almost half of requests are unexpected by users. This ratio strongly varies with the requested permission, the category and visibility of the requesting application and the user itself; that is, expectation is subjective to each individual. Moreover, privacy decisions are most strongly correlated with user expectation, but such correlation is also highly personal. Finally, Android's default permission manager would have violated the privacy of our participants 15% of the time.
2022
Autores
Brandao, A; Mendes, R; Vilela, JP;
Publicação
CODASPY'22: PROCEEDINGS OF THE TWELVETH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY
Abstract
Permission managers in mobile devices allow users to control permissions requests, by granting of denying application's access to data and sensors. However, existing managers are ineffective at both protecting and warning users of the privacy risks of their permissions' decisions. Recent research proposes privacy protection mechanisms through user profiles to automate privacy decisions, taking personal privacy preferences into consideration. While promising, these proposals usually resort to a centralized server towards training the automation model, thus requiring users to trust this central entity. In this paper we propose a methodology to build privacy profiles and train neural networks for prediction of privacy decisions, while guaranteeing user privacy, even against a centralized server. Specifically, we resort to privacy-preserving clustering techniques towards building the privacy profiles, that is, the server computes the centroids (profiles) without access to the underlying data. Then, using federated learning, the model to predict permission decisions is learnt in a distributed fashion while all data remains locally in the users' devices. Experiments following our methodology show the feasibility of building a personalized and automated permission manager guaranteeing user privacy, while also reaching a performance comparable to the centralized state of the art, with an F1-score of 0.9.
2022
Autores
Queiroz, S; Vilela, JP; Monteiro, E;
Publicação
IEEE ACCESS
Abstract
In this paper, we study the impact of computational complexity on the throughput limits of the fast Fourier transform (FFT) algorithm for orthogonal frequency division multiplexing (OFDM) waveforms. Based on the spectro-computational complexity (SC) analysis, we verify that the complexity of an N-point FFT grows faster than the number of bits in the OFDM symbol. Thus, we show that FFT nullifies the OFDM throughput on N unless the N -point discrete Fourier transform (DFT) problem verifies as Omega(N) , which remains a fascinating open question in theoretical computer science. Also, because FFT demands N to be a power of two 2(i) (i > 0), the spectrum widening leads to an exponential complexity on i , i.e. O (2(i)i) . To overcome these limitations, we consider the alternative frequency-time transform formulation of vector OFDM (V-OFDM), in which an N -point FFT is replaced by N/L (L > 0) smaller L-point FFTs to mitigate the cyclic prefix overhead of OFDM. Building on that, we replace FFT by the straightforward DFT algorithm to release the V-OFDM parameters from growing as powers of two and to benefit from flexible numerology (e.g., L = 3 , N = 156). Besides, by setting L to Theta (1) , the resulting solution can run linearly on N (rather than exponentially on i) while sustaining a non null throughput as N grows.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.