Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRACS

2019

Iris: Secure reliable live-streaming with opportunistic mobile edge cloud offloading

Autores
Martins, R; Correia, ME; Antunes, L; Silva, F;

Publicação
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE

Abstract
The ever-increasing demand for higher quality live streams is driving the need for better networking infrastructures, specially when disseminating content over highly congested areas, such as stadiums, concerts and museums. Traditional approaches to handle this type of scenario relies on a combination of cellular data, through 4G distributed antenna arrays (DAS), with a high count of WiFi (802.11) access points. This obvious requires a substantial upfront cost for equipment, planning and deployment. Recently, new efforts have been introduced to securely leverage the capabilities of wireless multipath, including WiFi multicast, 4G, and device-to-device communications. In order to solve these issues, we propose an approach that lessens the requirements imposed on the wireless infrastructures while potentially expanding wireless coverage through the crowd-sourcing of mobile devices. In order to achieve this, we propose a novel pervasive approach that combines secure distributed systems, WiFi multicast, erasure coding, source coding and opportunistic offloading that makes use of hyperlocal mobile edge clouds. We empirically show that our solution is able to offer a 11 fold reduction on the infrastructural WiFi bandwidth usage without having to modify any existing software or firmware stacks while ensuring stream integrity, authorization and authentication.

2019

Feature-enriched author ranking in incomplete networks

Autores
Silva, J; Aparicio, D; Silva, F;

Publicação
APPLIED NETWORK SCIENCE

Abstract
Evaluating scientists based on their scientific production is a controversial topic. Nevertheless, bibliometrics and algorithmic approaches can assist traditional peer review in numerous tasks, such as attributing research grants, deciding scientific committees, or choosing faculty promotions. Traditional bibliometrics rank individual entities (e.g., researchers, journals, faculties) without looking at the whole data (i.e., the whole network). Network algorithms, such as PageRank, have been used to measure node importance in a network, and have been applied to author ranking. However, traditional PageRank only uses network topology and ignores relevant features of scientific collaborations. Multiple extensions of PageRank have been proposed, more suited for author ranking. These methods enrich the network with information about the author’s productivity or the venue and year of the publication/citation. Most state-of-the-art (STOA) feature-enriched methods either ignore or do not combine effectively this information. Furthermore, STOA algorithms typically disregard that the full network is not known for most real-world cases.Here we describe OTARIOS, an author ranking method recently developed by us, which combines multiple publication/citation criteria (i.e., features) to evaluate authors. OTARIOS divides the original network into two subnetworks, insiders and outsiders, which is an adequate representation of citation networks with missing information. We evaluate OTARIOS on a set of five real networks, each with publications in distinct areas of Computer Science, and compare it against STOA methods. When matching OTARIOS’ produced ranking with a ground-truth ranking (comprised of best paper award nominations), we observe that OTARIOS is >30% more accurate than traditional PageRank (i.e., topology based method) and >20% more accurate than STOA (i.e., competing feature enriched methods). We obtain the best results when OTARIOS considers (i) the author’s publication volume and publication recency, (ii) how recently the author’s work is being cited by outsiders, and (iii) how recently the author’s work is being cited by insiders and how individual he is. Our results showcase (a) the importance of efficiently combining relevant features and (b) how to adequately perform author ranking in incomplete networks. © 2019, The Author(s).

2019

Finding Dominant Nodes Using Graphlets

Autores
Aparício, D; Ribeiro, P; Silva, F; Silva, JMB;

Publicação
Complex Networks and Their Applications VIII - Volume 1 Proceedings of the Eighth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2019, Lisbon, Portugal, December 10-12, 2019.

Abstract
Finding important nodes is a classic task in network science. Nodes are important depending on the context; e.g., they can be (i) nodes that, when removed, cause the network to collapse or (ii) influential spreaders (e.g., of information, or of diseases). Typically, central nodes are assumed to be important, and numerous network centrality measures have been proposed such as the degree centrality, the betweenness centrality, and the subgraph centrality. However, centrality measures are not tailored to capture one particular kind of important nodes: dominant nodes. We define dominant nodes as nodes that dominate many others and are not dominated by many others. We then propose a general graphlet-based measure of node dominance called graphlet-dominance (GD). We analyze how GD differs from traditional network centrality measures. We also study how certain parameters (namely the importance of dominating versus not being dominated and indirect versus direct dominances) influence GD. Finally, we apply GD to author ranking and verify that GD is superior to PageRank in four of the five citation networks tested. © 2020, Springer Nature Switzerland AG.

2019

Estimating time and score uncertainty in generating successful learning paths under time constraints

Autores
Nabizadeh, AH; Jorge, AM; Leal, JP;

Publicação
EXPERT SYSTEMS

Abstract
This paper addresses the problem of course (path) generation when a learner's available time is not enough to follow the complete course. We propose a method to recommend successful paths regarding a learner's available time and his/her knowledge background. Our recommender is an instance of long term goal recommender systems (LTRS). This method, after locating a target learner in a course graph, applies a depth-first search algorithm to find all paths for the learner given a time limitation. In addition, our method estimates learning time and score for all paths. It also indicates the probability of error for the estimated time and score for each path. Finally, our method recommends a path that satisfies the learner's time restriction while maximizing expected learning score. In order to evaluate our proposals for time and score estimation, we used the mean absolute error and average MAE. We have evaluated time and score estimation methods, including one proposed in the literature, on two E-learning datasets.

2019

Quarmic: A Data-Driven Web Development Framework

Autores
Pereira Cunha, PM; Leal, JP;

Publicação
8th Symposium on Languages, Applications and Technologies, SLATE 2019, June 27-28, 2019, Coimbra, Portugal.

Abstract
Quarmic is a web framework for rapid prototyping of web applications. Its main goal is to facilitate the development of web applications by providing a high level of abstraction that hides Web communication complexities. This framework allows developers to build scalable applications capable of handling data communication in different models, data persistence and authentication, requiring them just to use simple annotations. Quarmic’s approach consists of the replication of the shared object among clients and server in order to communicate through its methods execution. Where the annotations, namely decorators, are used to indicate the concern (model or view) that each method addresses and to implement the framework’s inversion of control. By indicating the method concern, it enables the separation of its execution across the clients (responsible for the view) and the server (responsible for the model) which facilitates the state management and code maintenance. © Pedro M. P. Cunha and José P. Leal.

2019

Defining Requirements for a Gamified Programming Exercises Format

Autores
Swacha, J; Queiros, R; Paiva, JC; Leal, JP;

Publicação
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019)

Abstract
Computer programming is a complex domain both to teach and learn. This incited endeavors to find methods that could mitigate at least some of the existing barriers. In the last years, automatic assessment has been playing an important role in reducing the burden of teachers in the assessment of students' attempts to solve programming exercises and fostering the autonomy of students by allowing them to practice in any place and at any time with timely feedback. Even more recent development is the use of gamification in computer programming education in order to raise the enjoyment and engagement of students. Despite its rising spread, until now, there is not a programming exercise specification format addressing the needs of gamification, such as the definition of challenges, the underlying storyline, including the links to other exercises, or the rewards for solving challenges in form of points, badges or virtual items. Such a data format would allow the exchange of ready-to-use programming exercises along with the gamification-related data among different educational institutions and courses, providing instructors a possibility to make use of gamification in their courses without having to invest their own time in defining gamification rules themselves. In this paper, we analyze a set of concepts related to programming gamification developed in our previous work to identify the requirements for the specification of a gamified exercise format. (C) 2019 The Authors. Published by Elsevier B.V.

  • 49
  • 193