2023
Autores
Paiva, JC; Figueira, A; Leal, JP;
Publicação
LEARNING TECHNOLOGIES AND SYSTEMS, ICWL 2022, SETE 2022
Abstract
Over the years, several systematic literature reviews have been published reporting advances in tools and techniques for automated assessment in Computer Science. However, there is not yet a major bibliometric study that examines the relationships and influence of publications, authors, and journals to make these research trends visible. This paper presents a bibliometric study of automated assessment of programming exercises, including a descriptive analysis using various bibliometric measures and data visualizations. The data was collected from the Web of Science Core Collection. The obtained results allow us to identify the most influential authors and their affiliations, monitor the evolution of publications and citations, establish relationships between emerging themes in publications, discover research trends, and more. This paper provides a deeper knowledge of the literature and facilitates future researchers to start in this field.
2023
Autores
Figueira, Á; Renna, F;
Publicação
Abstract
2023
Autores
Silva, J; Marques, ERB; Lopes, LMB; Silva, FMA;
Publicação
SOFTWARE-PRACTICE & EXPERIENCE
Abstract
We present Jay, a software framework for offloading applications in hybrid edge clouds. Jay provides an API, services, and tools that enable mobile application developers to implement, instrument, and evaluate offloading applications using configurable cloud topologies, offloading strategies, and job types. We start by presenting Jay's job model and the concrete architecture of the framework. We then present the programming API with several examples of customization. Then, we turn to the description of the internal implementation of Jay instances and their components. Finally, we describe the Jay Workbench, a tool that allows the setup, execution, and reproduction of experiments with networks of hosts with different resource capabilities organized with specific topologies. The complete source code for the framework and workbench is provided in a GitHub repository.
2023
Autores
Silva, VF; Silva, ME; Ribeiro, P; Silva, FMA;
Publicação
CoRR
Abstract
2023
Autores
dos Santos, AF; Leal, JP;
Publicação
GRAPH-BASED REPRESENTATION AND REASONING, ICCS 2023
Abstract
The size of massive knowledge graphs (KGs) and the lack of prior information regarding the schemas, ontologies and vocabularies they use frequently makes them hard to understand and visualize. Graph summarization techniques can help by abstracting details of the original graph to produce a reduced summary that can more easily be explored. Identifiers often carry latent information which could be used for classification of the entities they represent. Particularly, IRI namespaces can be used to classify RDF resources. Namespaces, used in some RDF serialization formats as a shortening mechanism for resource IRIs, have no role in the semantics of RDF. Nevertheless, there is often a hidden meaning behind the decision of grouping resources under a common prefix and assigning an alias to it. We improved on previous work on a namespace-based approach to KG summarization that classifies resources using their namespaces. Producing the summary graph is fast, light on computing resources and requires no previous domain knowledge. The summary graph can be used to analyze the namespace interdependencies of the original graph. We also present chilon, a tool for calculating namespace-based KG summaries. Namespaces are gathered from explicit declarations in the graph serialization, community contributions or resource IRI prefix analysis. We applied chilon to publicly available KGs, used it to generate interactive visualizations of the summaries, and discuss the results obtained.
2023
Autores
dos Santos, AF; Leal, JP;
Publicação
Lecture Notes in Networks and Systems
Abstract
Semantic measures evaluate and compare the strength of relations between entities. To assess their accuracy, semantic measures are compared against human-generated gold standards. Existing semantic gold standards are mainly focused on concepts. Nevertheless, semantic measures are frequently applied both to concepts and instances. Games with a purpose are used to offload to humans computational or data collection needs, improving results by using entertainment as motivation for higher engagement. We present Grettir, a system which allows the creation of crowdsourced semantic relations datasets for named entities through a game with a purpose where participants are asked to compare pairs of entities. We describe the system architecture, the algorithms and implementation decisions, the first implemented instance – dedicated to the comparison of music artists – and the results obtained. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.