Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Peças Lopes

2020

Flexibility Assessment of Multi-Energy Residential and Commercial Buildings

Autores
Coelho, A; Soares, F; Lopes, JP;

Publicação
ENERGIES

Abstract
With the growing concern about decreasing CO2 emissions, renewable energy sources are being vastly integrated in the energy systems worldwide. This will bring new challenges to the network operators, which will need to find sources of flexibility to cope with the variable-output nature of these technologies. Demand response and multi-energy systems are being widely studied and considered as a promising solution to mitigate possible problems that may occur in the energy systems due to the large-scale integration of renewables. In this work, an optimal model to manage the resources and loads within residential and commercial buildings was developed, considering consumers preferences, electrical network restrictions and CO2 emissions. The flexibility that these buildings can provide was analyzed and quantified. Additionally, it was shown how this model can be used to solve technical problems in electrical networks, comparing the performance of two scenarios of flexibility provision: flexibility obtained only from electrical loads vs. flexibility obtained from multi-energy loads. It was proved that multi-energy systems bring more options of flexibility, as they can rely on non-electrical resources to supply the same energy needs and thus relieve the electrical network. It was also found that commercial buildings can offer more flexibility during the day, while residential buildings can offer more during the morning and evening. Nonetheless, Multi-Energy System (MES) buildings end up having higher CO2 emissions due to a higher consumption of natural gas.

2020

Planning of distribution networks islanded operation: from simulation to live demonstration

Autores
Gouveia, J; Gouveia, C; Rodrigues, J; Carvalho, L; Moreira, CL; Lopes, JAP;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The integration of distributed Battery Energy Storage Systems (BESS) at the Medium Voltage (MV) and Low Voltage (LV) networks increases the distribution grid flexibility to deal with high penetration of Renewable Energy Sources (RES). In addition, it also enables the deployment of key self-healing functionalities, which allow the islanded operation of small sections of the distribution network. However, new planning and real-time operation strategies are required to allow the BESS coordinated control, as well as a cost-effective and stable operation. This paper presents new tools developed for the planning and real-time operation of distribution networks integrating BESS, particularly when operating islanding. For real-time operation, a short-term emergency operation-planning tool assesses the feasibility of islanded operation of a small section of the distribution network. The long-term impact of a BESS control strategy for islanded operation is assessed through a Life Cycle Analysis (LCA) tool. The results and implementation experience in real distribution network are also discussed.

2020

Joint analysis of the Portuguese and Spanish NECP for 2021-2030

Autores
De Oliveira, AR; Collado, JV; Lopes, JAP; Saraiva, JPT; Fonseca, NS; Domenech, S; Campos, FA;

Publicação
International Conference on the European Energy Market, EEM

Abstract
The European Union (EU) energy strategy towards decarbonization led EU countries to elaborate their corresponding National Energy and Climate Plans (NECP) for the period 2021 to 2030. This paper analyzes the Portuguese and Spanish NECPs concerning their power systems. CEVESA, a model for the long-term planning and operation of the Iberian electricity system, is used. The analysis is based on simulating the reference NECP scenario, as well as other alternative scenarios with different solar and wind generation shares, CO2 prices and fuel costs. Results provide insights on the MIBEL electricity market evolution under the current decarbonization national strategies. © 2020 IEEE.

2020

Fault-ride-through strategies for grid-tied and grid-forming smart-transformers suited for islanding and interconnected operation

Autores
Rodrigues, J; Moreira, C; Lopes, JP;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
This paper presents two innovative Fault-Ride-Through (FRT) strategies suited for Smart-Transformers (ST) supplying hybrid AC/DC distribution grids within a microgrid environment. The first strategy is suited for ST without a local energy storage, where its Medium Voltage (MV) inverter is operated in grid-tied mode. The proposed approach relies on the voltage sensitivity of resources connected to the ST fed distribution networks aiming to limit the MV inverter current. The second strategy is suited for ST incorporating local energy storage and operating its MV inverter in grid-forming mode, thus enabling islanding operation of a MV grid section. The proposed FRT strategy aims to regulate ST's output voltage by calculating the maximum voltage drop in the coupling filter in order to control the output current. The proposed strategies are evaluated exploiting appropriated simulation models and extensive operating conditions.

2021

An improved version of the Continuous Newton's method for efficiently solving the Power-Flow in Ill-conditioned systems

Autores
Tostado Veliz, M; Matos, MA; Lopes, JAP; Jurado, F;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper tackles the efficient Power-Flow solution of ill-conditioned cases. In that sense, those methods based on the Continuous Newton's philosophy look very promising, however, these methodologies still present some issues mainly related with the computational efficiency or the robustness properties. In order to overcome these drawbacks, we suggest several modifications about the standard structure of the Continuous Newton's method. Thus, the standard Continuous Newton's paradigm is firstly modified with a frozen Jacobian scheme for reducing its computational burden; secondly, it is extended for being used with High-order Newton-like method for achieving higher convergence rate and, finally, a regularization scheme is introduced for improving its robustness features. On the basis of the suggested improvements, a Power-Flow solution paradigm is developed. As example, a novel Power-Flow solver based on the introduced solution framework and the 4th order Runge-Kutta formula is developed. The novel technique is validated in several realistic large-scale ill-conditioned systems. Results show that the suggested modifications allow to overcome the drawbacks presented by those methodologies based on the Continuous Newton's method. On the light of the results obtained it can be also claimed, that the developed solution paradigm constitutes a promising framework for developing robust and efficient Power-Flow solution techniques.

2021

Influence of Load Dynamics on Converter-Dominated Isolated Power Systems

Autores
Gouveia, J; Moreira, CL; Lopes, JAP;

Publicação
APPLIED SCIENCES-BASEL

Abstract
The operation of isolated power systems with 100% converter-based generation requires the integration of battery energy storage systems (BESS) using grid-forming-type power converters. Under these operating conditions, load dynamics influences the network frequency and voltage following large voltage disturbances. In this sense, the inclusion of induction motor (IM) load models is required to be properly considered in BESS power converter sizing. Thus, this paper presents an extensive sensitivity analysis, demonstrating how load modeling affects the BESS power converter capacity when adopting conventional control strategies while aiming to assure the successful recovery of all IM loads following a network fault. Furthermore, this work highlights that generators with converter interfaces can actively contribute to mitigate the negative impacts resulting from IM loads following a network fault. Thereby, two distinct control strategies are proposed to be integrated in the power electronic interfaces of the available converter-based generators: one to be adopted in grid-following converters and another one suitable for grid-forming converters. The proposed control strategies provide an important contribution to consolidating insular grid codes, aiming to achieve operational scenarios accommodating 100% penetration of converter-based generation with a significative percentage of the IM load composition without resorting to a significative increase in BESS power converter sizing.

  • 14
  • 38