2019
Autores
Santos, D; Guerreiro, A; Baptista, JM;
Publicação
PHOTONICS
Abstract
The introduction of metallic nanostructures in optical fibers has revolutionized the field of plasmonic sensors since they produce sharper and fine-tuned resonances resulting in higher sensitivities and resolutions. This article evaluates the performance of three different plasmonic optical fiber sensors based on D-type and suspended core fibers with metallic nanowires. It addresses how their different materials, geometry of the components, and their relative position can influence the coupling between the localized plasmonic modes and the guided optical mode. It also evaluates how that affects the spatial distributions of optical power of the different modes and consequently their overlap and coupling, which ultimately impacts the sensor performance. In this work, we use numerical simulations based on finite element methods to validate the importance of tailoring the features of the guided optical mode to promote an enhanced coupling with the localized modes. The results in terms of sensitivity and resolution demonstrate the advantages of using suspended core fibers with metallic nanowires.
2019
Autores
Guerreiro, A; Apolinario, A; Lopes, A; Hierro Rodriguez, A; Aguilar, G; Baptista, JM; Silva, NA; Frazao, O; Quiterio, P; Jorge, P; Rodrigues, P; Moraes, SS; Silva, S; Ferreira, TD; Santos, JL; Araujo, JP;
Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
We present the design, fabrication and optical characterization of functional metamaterials for optical sensing of Hydrogen based on inexpensive self-assembly processes of metallic nanowires integrated in nanoporous alumina templates([37-42]). The optical properties of these materials strongly depend on the environmental concentration or partial pressure of hydrogen and can be used to develop fully optical sensors that reduce the danger of explosion. Optical metamaterials are artificial media, usually combining metallic and dielectric sub-wavelength structures, that exhibit optical properties that cannot be found in naturally occurring materials. Among these, functional metamaterials offer the added possibility of altering or controlling these properties externally after fabrication, in our case by contact with a hydrogen rich atmosphere. This dependency can be used to design([43-45]) and develop optical sensors that respond to this gas or to chemical compounds that contain or release hydrogen. In this paper we present some designs for hydrogen functional metamaterials and discuss the main parameters relevant in the optimization of their response.
2019
Autores
Ferreira, TD; Silva, NA; Guerreiro, A;
Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
We report on the development of numerical module for the HiLight simulation platform based on GPGPU supercomputing to solve a system of coupled fields governed by the Generalized Nonlinear Schrodinger Equation with local and/or nonlocal nonlinearities. This models plays an important role in describing a plethora of different phenomena in various areas of physics. In optics, this model was initially used to describe the propagation of light through local and/or nonlocal systems under the paraxial approximation, but more recently it has been extensively used as a support model to develop optical analogues. However, establishing the relation between the original system and the analogue, as well as, between their model and the actual experimental setup is not an easy task. First and foremost because in most cases the governing equations are nonintegrable, preventing from obtaining analytical solutions and hindering the optimization of the experiments. Alternatively, despite numerical methods not providing exact solutions, they allow to test different experimental scenarios and provide a better insight to what to expect in an actual experiment, while giving access to all the variables of the optical system being simulated. However, the numerical solution of a system of N-coupled Schrodinger fields in systems with two or three spatial dimensions requires massive computation resources, and must employ advanced supercomputing and parallelization techniques, such as GPGPU. This paper focuses on the numerical aspects behind this challenge, describing the structure of our simulation module, its performance and the tests performed.
2019
Autores
Guerreiro, A; Silva, NA; Costa, J; Gomes, M; Alves, R; Ferreira, TD; Madureira, IS; Pereira, AAM; Almeida, AL;
Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
We report on the development of HiLight, a new multiphysics simulation platform for advanced photonics with interactive modules dedicated to the study of the propagation of light in multitude of spatially structured optical media, including nonlocal and nonlinear media, optical lattices with atomic gases and plasmas, among others.
2020
Autores
Ferreira, TD; Silva, NA; Bertolami, O; Gomes, C; Guerreiro, A;
Publicação
PHYSICAL REVIEW E
Abstract
The generalized Schrodinger-Newton system of equations with both local and nonlocal nonlinearities is widely used to describe light propagating in nonlinear media under the paraxial approximation. However, its use is not limited to optical systems and can be found to describe a plethora of different physical phenomena, for example, dark matter or alternative theories for gravity. Thus, the numerical solvers developed for studying light propagating under this model can be adapted to address these other phenomena. Indeed, in this work we report the development of a solver for the HiLight simulations platform based on GPGPU supercomputing and the required adaptations for this solver to be used to test the impact of new extensions of the Theory of General Relativity in the dynamics of the systems. In this work we shall analyze theories with nonminimal coupling between curvature and matter. This approach in the study of these new models offers a quick way to validate them since their analytical analysis is difficult. The simulation module, its performance, and some preliminary tests are presented in this paper.
2020
Autores
Alves, RA; Guerreiro, A; Navarro Cia, M;
Publicação
PHYSICAL REVIEW B
Abstract
The recent ability of plasmonic nanostructures to probe subnanometer and even atomic scales demands theories that can account for the nonlocal dynamics of the electron gas. The hydrodynamic Drude model (HDM) captures much of the microscopic dynamics of the quantum mechanical effects when additional boundary conditions are considered. Here, we revisit the HDM under the Madelung formalism to reexpress its coupled system of equations as a single nonlinear Schrodinger equation in order to have a natural quantum mechanical description of plasmonics. Specifically, we study the response of two overlapping nanowires with this formalism. We ensure that an proposed frame concurs with classical electrodynamics when the local response approximation holds in the plasmonic system by finding the correction needed.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.