Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ariel Guerreiro

2017

Tunable light fluids using quantum atomic optical systems

Autores
Silva, NA; Ferreira, TD; Costa, JC; Gomes, M; Alves, RA; Guerreiro, A;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
The realization of tabletop optical analogue experiments of superfluidity relies on the engineering of suitable optical media, with tailored optical properties. This work shows how quantum atomic optical systems can be used to develop highly tunable optical media, with localized control of both linear and nonlinear susceptibility. Introducing the hydrodynamic description of light, the superfluidity of light in these atomic media is investigated through GPU-enhanced numerical simulations, with the numeric observation of the superfluidic signature of suppressed scattering through a defect.

2013

Spatial soliton dynamics in cubic-quintic media

Autores
Silva, NA; Carvalho, MI; Guerreiro, A;

Publicação
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS

Abstract
In this paper we address soliton-soliton interactions in a nonlinear cubic-quintic optic media, using for that purpose numerical methods and high performance graphics processor unit (GPU) computing. We describe an implementation of GPU-based computational simulations of the generalized Nonlinear Schrodinger Equation, obtaining simulations more than 40 times faster relative to CPU-based simulations, especially in the multidimensional case. We focus our attention in the study of soliton collisions and scattering phenomena that, offering the possibility of steering light with light, open a path towards future optical devices.

2016

Local management of the nonlinearity of Bose-Einstein condensates with pinched potentials

Autores
Guerreiro, A; Silva, NA;

Publicação
PHYSICAL REVIEW A

Abstract
We present a proposal for the local control of the nonlinearity in quasi-one-dimensional Bose-Einstein condensates induced by a local pinching of the transverse confining potential. We investigate the scattering of bright matter-wave solitons through a pinched potential using numerical simulations of the full three-dimensional Gross-Pitaevskii equation and the corresponding effective one-dimensional model with spatially varying nonlinearity.

2017

SPaCe-GEM: Solver of the Einstein equations using GPUs under the gravitoelectromagnetic approximation

Autores
Gomes, M; Costa, JC; Alves, RA; Silva, NA; Guerreiro, A;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
Under specific conditions, there is a formal analogy between the fundamental equations of electromagnetism and relativistic gravitation, described by the Einstein field equations of general relativity. In this paper, we report on how we have used this analogy to implement a solver of the Einstein equations adapting algorithms initially developed for electromagnetism, combined with methods of heterogeneous supercomputing, in GPU that can achieve fast computing and exhibit good performance. We also present the results of the simulations used to validate our solver. © 2017 SPIE.

2017

Solving the multi-level Maxwell-Bloch equations using GPGPU computing for the simulation of nonlinear optics in atomic gases

Autores
Costa, JC; Gomes, M; Alves, RA; Silva, NA; Guerreiro, A;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
We present a numerical implementation of a solver for the Maxwell-Bloch equations to calculate the propagation of a light pulse in a nonlinear medium composed of an atomic gas in one, two and three dimensional systems. This implementation solves the wave equation of light using a finite difference method in the time domain scheme, while the Bloch equations for the atomic population in each point of the simulation domain are integrated using splitting methods. We present numerical simulations of atomic-gas systems and performance benchmarks.

2017

Space- time refraction of light in time dependent media: the analogue within the analogue

Autores
Guerreiro, A; Mendonca, JT; Costa, JC; Gomes, M; Silva, NA;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
The problem of electromagnetic wave propagation in time varying media is very old, but in recent years it has been revisited at a more fundamental level leading to the introduction of several new concepts, such as Time Refraction. These concepts explore the symmetries between space and time and can be transposed to different fields by establishing powerful analogies between effects in Electrodynamics, Optics and problems in Quantum Cosmology and in what is sometimes called Analogue Gravity. We examine the alteration of the ordinary (spatial) Fresnel laws of refraction at the interface between two media when the optical properties of one of the media varies in time.

  • 7
  • 23