Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ariel Guerreiro

2017

Persistent currents of superfluidic light in a four-level coherent atomic medium

Autores
Silva, NA; Mendonca, JT; Guerreiro, A;

Publicação
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS

Abstract
In this work, we investigate the superfluidic properties of light propagating in a four-level coherent atomic medium. The model is derived under the paraxial approximation in the form of a generalized nonlinear Schrodinger equation and features spatially controllable and quantum-enhanced optical properties, which can offer new possibilities in the field of optical analogue systems. In particular, we use this versatility to study the dynamics of an optical vortex beam confined in a nontrivial connected geometry, finding numerical evidence of another superfluidic signature analogue: the persistent current of light. (C) 2017 Optical Society of America

2017

Dissipative solitons in 4-level atomic optical systems

Autores
Silva, NA; Almeida, AL; Costa, JC; Gomes, M; Alves, RA; Guerreiro, A;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
In this work we develop a theoretical model to describe the propagation of an optical pulse in a 4-level atomic system. We investigate the existence of dissipative soliton solutions and analyze the stability of these solitary waves, comparing the analytical results with computational simulations based on the effective (1+1)-dimensional model derived from the Maxwell-Bloch equation under the slowly-varying envelope approximation.

2017

Quantum wires as sensors of the electric field: A model into quantum plasmonics

Autores
Alves, RA; Costa, JC; Gomes, M; Silva, NA; Guerreiro, A;

Publicação
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)

Abstract
This paper presents a study for a fibre optic sensor based on quantum wires to detect and measure the amplitude and direction of a static electric field. This study is supported by the analogy of the fluid equations describing the free electrons in the quantum wires and the Madelung formalism of Quantum Mechanics. In this context, it is possible to construct a diatomic plasmonic molecule whose energy levels can be Stark shifted by an external electric field and readout using a light beam tuned to the Rabi oscillations of these levels. Choosing the adequate design parameters it is possible to estimate a sensitivity of 100nm/NC-1.

2017

Doppler Broadening effects in Plasmonic Quantum Dots

Autores
Alves, RA; Silva, NA; Costa, JC; Gomes, M; Guerreiro, A;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
In this paper we analyse the effects of the Doppler shift on the optical response of a nanoplasmonic system. Through the development of a simplified model based on the Hydrodynamic Drude model we analyse the response of a quantum dot embed in a moving fluid, predicting the Doppler broadening and the shift of the spectral line.

2015

Simulation of Long Period Fibre Gratings and Applications

Autores
Baptista, FD; Guerreiro, A; Gomes, LA; Caldas, P;

Publicação
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014)

Abstract
Long-period gratings is class of fiber gratings, in which the period of the refractive index modulation is such that it satisfies a phase matching condition between the fundamental core mode and forward propagating cladding modes of an optical fiber. Many applications in optical communications and optical fiber sensing have been reported along the last years. In this work we present a simulation tool for determining LPG transmission spectrum and the coupling curve. The simulation tool uses MatLab code. The software produces also estimations of the resonant wavelength displacement due to changes in external parameters like temperature or external refractive index. A simple comparison between the simulation and the experimental result show that exist a good agreement with results obtain.

2017

Pinching optical potentials for spatial nonlinearity management in Bose-Einstein Condensates

Autores
Silva, NA; Costa, JC; Gomes, M; Alves, RA; Guerreiro, A;

Publicação
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
Here we explore the possibility of controlling the inhomogeneities in quasi-1D Bose-Einstein condensates using a spatial variation of the transverse confinement potential and explore different optical strategies to realize these pinched traps. Furthermore, we also present some early stage results on the dynamics of matter-wave solitons in such systems using computational simulations of the full 3D Gross-Pitaevskii equation.

  • 9
  • 23