Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CSE

2020

A Novel 2-D Speckle Tracking Method for High-Frame-Rate Echocardiography

Autores
Orlowska, M; Ramalli, A; Petrescu, A; Cvijic, M; Bezy, S; Santos, P; Pedrosa, J; Voigt, JU; D'Hooge, J;

Publicação
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Abstract
Speckle tracking echocardiography (STE) is a clinical tool to noninvasively assess regional myocardial function through the quantification of regional motion and deformation. Even if the time resolution of STE can be improved by high-frame-rate (HFR) imaging, dedicated HFR STE algorithms have to be developed to detect very small interframe motions. Therefore, in this article, we propose a novel 2-D STE method, purposely developed for HFR echocardiography. The 2-D motion estimator consists of a two-step algorithm based on the 1-D cross correlations to separately estimate the axial and lateral displacements. The method was first optimized and validated on simulated data giving an accuracy of 3.3% and 10.5% for the axial and lateral estimates, respectively. Then, it was preliminarily tested in vivo on ten healthy volunteers showing its clinical applicability and feasibility. Moreover, the extracted clinical markers were in the same range as those reported in the literature. Also, the estimated peak global longitudinal strain was compared with that measured with a clinical scanner showing good correlation and negligible differences (-20.94% versus -20.31%, ${p}$ -value = 0.44). In conclusion, a novel algorithm for STE was developed: the radio frequency (RF) signals were preferred for the axial motion estimation, while envelope data were preferred for the lateral motion. Furthermore, using 2-D kernels, even for 1-D cross correlation, makes the method less sensitive to noise. © 1986-2012 IEEE.

2020

MARESye: A hybrid imaging system for underwater robotic applications

Autores
Pinto, AM; Matos, AC;

Publicação
INFORMATION FUSION

Abstract
This article presents an innovative hybrid imaging system that provides dense and accurate 3D information from harsh underwater environments. The proposed system is called MARESye and captures the advantages of both active and passive imaging methods: multiple light stripe range (LSR) and a photometric stereo (PS) technique, respectively. This hybrid approach fuses information from these techniques through a data-driven formulation to extend the measurement range and to produce high density 3D estimations in dynamic underwater environments. This hybrid system is driven by a gating timing approach to reduce the impact of several photometric issues related to the underwater environments such as, diffuse reflection, water turbidity and non-uniform illumination. Moreover, MARESye synchronizes and matches the acquisition of images with sub-sea phenomena which leads to clear pictures (with a high signal-to-noise ratio). Results conducted in realistic environments showed that MARESye is able to provide reliable, high density and accurate 3D data. Moreover, the experiments demonstrated that the performance of MARESye is less affected by sub-sea conditions since the SSIM index was 0.655 in high turbidity waters. Conventional imaging techniques obtained 0.328 in similar testing conditions. Therefore, the proposed system represents a valuable contribution for the inspection of maritime structures as well as for the navigation procedures of autonomous underwater vehicles during close range operations.

2020

The Last Mile: High-Assurance and High-Speed Cryptographic Implementations

Autores
Almeida, JB; Barbosa, M; Barthe, G; Gregoire, B; Koutsos, A; Laporte, V; Oliveira, T; Strub, PY;

Publicação
2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2020)

Abstract
We develop a new approach for building cryptographic implementations. Our approach goes the last mile and delivers assembly code that is provably functionally correct, protected against side-channels, and as efficient as handwritten assembly. We illustrate our approach using ChaCha20Poly1305, one of the two ciphersuites recommended in TLS 1.3, and deliver formally verified vectorized implementations which outperform the fastest non-verified code. We realize our approach by combining the Jasmin framework, which offers in a single language features of high-level and low-level programming, and the EasyCrypt proof assistant, which offers a versatile verification infrastructure that supports proofs of functional correctness and equivalence checking. Neither of these tools had been used for functional correctness before. Taken together, these infrastructures empower programmers to develop efficient and verified implementations by "game hopping", starting from reference implementations that are proved functionally correct against a specification, and gradually introducing program optimizations that are proved correct by equivalence checking. We also make several contributions of independent interest, including a new and extensible verified compiler for Jasmin, with a richer memory model and support for vectorized instructions, and a new embedding of Jasmin in EasyCrypt.

2020

Using Artificial Intelligence to Predict Academic Performance

Autores
Reis, A; Rocha, T; Martins, P; Barroso, J;

Publicação
HCI International 2020 - Late Breaking Papers: Multimodality and Intelligence - 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19-24, 2020, Proceedings

Abstract
The academic performance of a higher education student can be affected by several factors and in most cases Higher Education Institutions (HEI) have programs to intervene, prevent failure or students dropping out. These include student tutoring, mentoring, recovery classes, summer school, etc. Being able to identify the borderline cases is extremely important for planning and intervening in time. This position paper reports on an ongoing project, being developed at the University of Trás-os-Montes e Alto Douro (UTAD), which uses the students’ data and artificial intelligence algorithms to create models and predict the performance of students and classes. The main objective of the IA.EDU project is to research the usage of data, artificial intelligence and data science to create artificial intelligence solutions, including models and applications, to provide predictive information that can contribute to the increase in students’ academic success and a reduction in the dropout rate, by making it possible to act proactively with the students at risk, course directors and course designers. © 2020, Springer Nature Switzerland AG.

2020

9th Symposium on Languages, Applications and Technologies, SLATE 2020, July 13-14, 2020, School of Technology, Polytechnic Institute of Cávado and Ave, Portugal (Virtual Conference)

Autores
Simões, A; Henriques, PR; Queirós, R;

Publicação
SLATE

Abstract

2020

Blind and visually impaired visitors’ experiences in museums: Increasing accessibility through assistive technologies

Autores
Vaz, R; Freitas, D; Coelho, A;

Publicação
International Journal of the Inclusive Museum

Abstract
People with visual impairments generally experience many barriers when visiting museum exhibitions, given the ocular centricity of these institutions. The situation is worsened by a frequent lack of physical, intellectual and sensory access to exhibits or replicas, increased by the inaccessibility to use ICT-based local or general alternative or augmentative communication resources that can allow different interactions to sighted visitors. Few studies analyze applications of assistive technologies for multisensory exhibit design and relate them with visitors’ experiences. This article aims to contribute to the field of accessibility in museums by providing an overview of the experiences and expectations of blind and visually impaired patrons when visiting those places, based on a literature review. It also surveys assistive technologies used to enhance the experiences of visitors with vision loss while visiting museum exhibitions and spaces. From this, it is highlighted that adopting hybrid technological approaches, following universal design principles and collaborating with blind and visually impaired people, can contribute to integrate access across the continuum of visits. © Common Ground Research Networks, Roberto Vaz, Diamantino Freitas, António Coelho, Some Rights Reserved,

  • 104
  • 220