Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2009

Using Side Scan Sonar for Relative Navigation

Autores
Pinto, M; Ferreira, B; Matos, A; Cruz, N;

Publicação
IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6

Abstract
This paper describes the interaction between the kinematic model of the AUV MARES, and the measurement and observation of the environment through images obtained with the sonar use. Three types of Sonar are discussed in this paper; there are forward-look, side scan and multibeam. But the sonar used to develop this work was the side scan sonar. The type of observations and characteristics of the environment provided by the sonar are described here. The method, which connects the sensory part of the vehicle with the observations of the sonar, was the Kalman filter (EKF). In this paper, are presented two simulations of filters for two different characteristics. Both filters estimate the characteristics of natural landmarks, creating an environment map, but both of them consider different states of the vehicle. Results of the simulation are obtained. The features that are considered are an underwater pipe on the floor and a wall. It also generated a control for the vehicle that provides the capacity to move along the feature/landmark from a reference distance.

2009

Side scan Sonar Image Segmentation and Feature Extraction

Autores
Pinto, M; Ferreira, B; Matos, A; Cruz, N;

Publicação
OCEANS 2009, VOLS 1-3

Abstract
This paper describes an algorithm to make the treatment, segmentation, skeleton and characteristics extraction from acoustic images obtained from a side scan sonar. The fundamental goal is to implement a system that endows a autonomous vehicle with the capacity to know its own distance to the marine bottom and to features located on the marine environment. This features extraction would improve vehicle navigation and allow it to navigate relative to features like an underwater piper on the sea floor or a vertical wall. This paper was made based on Imagenex Sport Scan (side scan sonar) whose function is the observation of environment. Also the autonomous surface vehicle (ASV) ZARCO was used to transport the side scan sonar. Both the vehicles belong to The OceansSys Group DEEC-FEUP. A communication interface between the ASV ZARCO, Imagenex Sport Scan, and a static laptop that allows the observation of sonar data in real time is also described in this paper. The algorithms and routines implemented were validated with real acoustic images acquired during a mission. Results from algorithms application and features extraction are shown in this paper.

2009

Shallow Water Surveying Using Experimental Interferometric Synthetic Aperture Sonar

Autores
Silva, SR; Cunha, S; Matos, A; Cruz, N;

Publicação
MARINE TECHNOLOGY SOCIETY JOURNAL

Abstract
This paper describes an interferometric synthetic aperture sonar system based on an unmanned surface vehicle customized for shallow water environments. Synthetic aperture sonar enables imagery of high resolution that is independent of range by using the displacement of the sonar platform to create a large virtual array. If two geometrically displaced images are obtained, the construction of three-dimensional topographic maps is possible through the use of interferometric techniques. The use of an unmanned surface vehicle presents several advantages that alleviate some problems related to the formation of synthetic aperture images, which are mainly related to the fact that a precise navigation system can be used for the boat control and sonar imagery motion compensation. Also, a small unmanned surface vehicle is advantageous in terms of cost of operation, maintenance and ease of deployment. Mapping of shallow water areas is an important task for many commercial and scientific applications like river navigability, infrastructure maintenance and natural resource monitoring. These tasks can be done efficiently with this system. Sample data obtained during test trials illustrate how synthetic aperture can be used to generate underwater imagery and bathymetric data.

2009

Hydrodynamic modeling and motion limits of AUV MARES

Autores
Ferreira, B; Pinto, M; Matos, A; Cruz, N;

Publicação
IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6

Abstract
This papers addresses the dynamic characterization of the autonomous underwater vehicle MARES. The paper presents the main dynamic properties of this underwater robotic platform as well as the procedures employed to obtain the parameters that define the vehicle model. Furthermore, the paper also presents a detailed characterization of the elementary motions that this vehicle is able to perform.

2009

Using Side Scan Sonar to Relative Navigation

Autores
Pinto, M; Ferreira, B; Matos, A; Cruz, N;

Publicação
OCEANS 2009, VOLS 1-3

Abstract
This paper describes the interaction between the kinematic model of the AUV MARES and the measurement or observation of the environment through images obtained with a sonar. Three types of sonar are discussed in this paper: forward-look, side scan and multibeam - but the sonar used to develop this work was the side scan sonar. The type of observations and characteristics of the environment provided by the sonar are described here. The method which connects the sensory part of the vehicle with the observations from the sonar, was the Kalman filter (EKF). In this paper, we present two simulations of filters for two different characteristics. Both filters estimate the characteristics of the natural landmarks, creating an environment map, but both of them consider different states of the vehicle. Results of the simulation are obtained. The features that are considered are an underwater pipe on the floor and a vertical wall. A control loop for the vehicle that provides the capacity to move along the feature/landmark from a reference distance is also discussed.

2009

Modeling and Motion Analysis of the MARES Autonomous Underwater Vehicle

Autores
Ferreira, B; Pinto, M; Matos, A; Cruz, N;

Publicação
OCEANS 2009, VOLS 1-3

Abstract
In the robotic domain, it is common to deduce and use models that allow translating mathematically the element behavior. In some cases, these would serve as base to determine and develop a controller, for example. Beyond this, the simulation and experiments are reasons that leave to the development of models, becoming evaluation tools of the system behavior, especially when there are constraints of implementation or in experiments. However, the modeling is an approach to the reality, since it is difficult to translate the behavior of an element in a strict way and the disturbances to witch it is subject to. In this work, we address the modeling questions of an autonomous underwater vehicle. This paper describes the deducing of a dynamic model with six degrees of freedom of an underwater vehicle, considering all of its physical characteristics. This is achieved by the determination of all forces that actuates on the body during its motions and by the determination of the rigid body dynamic. The modeling method is presented as well as the coefficients determination. Finally, a comparison with experimental results is carried out.

  • 136
  • 168