2023
Autores
Barbosa, S; Silva, ME; Dias, N; Rousseau, D;
Publicação
Abstract
2023
Autores
Dias, N; Amaral, G; Almeida, C; Ferreira, A; Camilo, A; Silva, E; Barbosa, S;
Publicação
Abstract
2023
Autores
Riz L.; Caraffa A.; Bortolon M.; Mekhalfi M.L.; Boscaini D.; Moura A.; Antunes J.; Dias A.; Silva H.; Leonidou A.; Constantinides C.; Keleshis C.; Abate D.; Poiesi F.;
Publicação
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Abstract
We present MONET, a new multimodal dataset captured using a thermal camera mounted on a drone that flew over rural areas, and recorded human and vehicle activities. We captured MONET to study the problem of object localisation and behaviour understanding of targets undergoing large-scale variations and being recorded from different and moving viewpoints. Target activities occur in two different land sites, each with unique scene structures and cluttered backgrounds. MONET consists of approximately 53K images featuring 162K manually annotated bounding boxes. Each image is timestamp-aligned with drone metadata that includes information about attitudes, speed, altitude, and GPS coordinates. MONET is different from previous thermal drone datasets because it features multimodal data, including rural scenes captured with thermal cameras containing both person and vehicle targets, along with trajectory information and metadata. We assessed the difficulty of the dataset in terms of transfer learning between the two sites and evaluated nine object detection algorithms to identify the open challenges associated with this type of data. Project page: https://github.com/fabiopoiesi/monet-dataset.
2023
Autores
Copinet, B; Flügge, F; Margetich, LC; Vandepitte, M; Petrache, PL; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
Intensive cattle farming as a means of protein production contributes with the direct emission of greenhouse gases and the indirect contamination of soil and water. The public awareness towards this issue is growing in western cultures, leading to the stagnation of meat consumption and to the willingness to adopt alternative sustainable sources of protein. A solution is to farm insects as they present a reduced environmental impact and constitute a well-known source of protein. However, for westerners, eating insects implies a cultural change as they are still seen as dirty and disgusting. In 2022, a team of five EPS@ISEP students chose to design a solution for this problem followed by the assembly and test of the corresponding proof-of-concept prototype. They decided to design a home farming kit to grow mealworms driven by ethical, sustainable and the market needs. Exploring the insect life-cycle, the kit provides protein for humans and animals, chitin for soil bacteria and frass for plants. It can also be used as an educational tool for children to learn about sustainability, social responsibility and insect life-cycles, helping to overtake the cultural barrier against insect eating from a young age. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2023
Autores
Blaschke, L; Blauw, B; Herlange, C; Pyciak, A; Zschocke, J; Duarte, AJ; Malheiro, B; Ribeiro, C; Justo, J; Silva, MF; Ferreira, P; Guedes, P;
Publicação
Lecture Notes in Educational Technology
Abstract
Tourists nowadays tend to avoid tourist traps and are looking for engaging ways to explore cities in the limited time they have. Standard options to explore cities seldom offer a combination between efficiency and fun. Furthermore, a search for an exploration city app returns an unlimited supply of lookalike websites and apps, all claiming to be the best. This paper reports the development of QRioCity, an efficient and exciting way to explore cities, by the “Dragonics” student team. QRioCity offers users the option to sign up for a playful tour through the city of Porto using a public kiosk with an interactive touchscreen. There is no limit to the number of teams playing simultaneously nor there is need to provide personal data. The teams are led through the city using clues and are proposed assignments, like scanning QR codes, to earn points. At the end of the game, every team receives discount coupons for local shops or stores depending on their score, even when they play alone. This way QRioCity helps tourists enjoying the local city life while offering municipalities a chance to strengthen their local economy. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
2023
Autores
Leal, F; Veloso, B; Malheiro, B; Burguillo, JC;
Publicação
EXPERT SYSTEMS
Abstract
Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.