2024
Autores
Loureiro, G; Dias, A; Almeida, J; Martins, A; Hong, SP; Silva, E;
Publicação
REMOTE SENSING
Abstract
The deep seabed is composed of heterogeneous ecosystems, containing diverse habitats for marine life. Consequently, understanding the geological and ecological characteristics of the seabed's features is a key step for many applications. The majority of approaches commonly use optical and acoustic sensors to address these tasks; however, each sensor has limitations associated with the underwater environment. This paper presents a survey of the main techniques and trends related to seabed characterization, highlighting approaches in three tasks: classification, detection, and segmentation. The bibliography is categorized into four approaches: statistics-based, classical machine learning, deep learning, and object-based image analysis. The differences between the techniques are presented, and the main challenges for deep sea research and potential directions of study are outlined.
2024
Autores
Dias, A; Mucha, A; Santos, T; Oliveira, A; Amaral, G; Ferreira, H; Martins, A; Almeida, J; Silva, E;
Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
This paper presents the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). This solution is based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be applied as the first line of the response to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or in the open sea during transport activities in a fast, efficient, and low-cost way. The paper describes the work done in the development of a team of autonomous vehicles able to carry as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), and the development of a multi-robot framework for efficient oil spill mitigation. Field tests have been performed in Portugal and Spain's harbors, with a simulated oil spill, and the coordinate oil spill task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV) STORK has been validated.
2024
Autores
Guedes, PA; Silva, HM; Wang, S; Martins, A; Almeida, J; Silva, E;
Publicação
Journal of Marine Science and Engineering
Abstract
2024
Autores
Leite, PN; Pinto, AM;
Publicação
INFORMATION FUSION
Abstract
Exploiting stronger winds at offshore farms leads to a cyclical need for maintenance due to the harsh maritime conditions. While autonomous vehicles are the prone solution for O&M procedures, sub-sea phenomena induce severe data degradation that hinders the vessel's 3D perception. This article demonstrates a hybrid underwater imaging system that is capable of retrieving tri-dimensional information: dense and textured Photogrammetric Stereo (PS) point clouds and multiple accurate sets of points through Light Stripe Ranging (LSR), that are combined into a single dense and accurate representation. Two novel fusion algorithms are introduced in this manuscript. A Joint Masked Regression (JMR) methodology propagates sparse LSR information towards the PS point cloud, exploiting homogeneous regions around each beam projection. Regression curves then correlate depth readings from both inputs to correct the stereo-based information. On the other hand, the learning-based solution (RHEA) follows an early-fusion approach where features are conjointly learned from a coupled representation of both 3D inputs. A synthetic-to-real training scheme is employed to bypass domain-adaptation stages, enabling direct deployment in underwater contexts. Evaluation is conducted through extensive trials in simulation, controlled underwater environments, and within a real application at the ATLANTIS Coastal Testbed. Both methods estimate improved output point clouds, with RHEA achieving an average RMSE of 0.0097 m -a 52.45% improvement when compared to the PS input. Performance with real underwater information proves that RHEA is robust in dealing with degraded input information; JMR is more affected by missing information, excelling when the LSR data provides a complete representation of the scenario, and struggling otherwise.
2024
Autores
Pereira, MI; Pinto, AM;
Publicação
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Abstract
Autonomous Surface Vehicles (ASVs) are bound to play a fundamental role in the maintenance of offshore wind farms. Robust navigation for inspection vehicles should take into account the operation of docking within a harbouring structure, which is a critical and still unexplored maneuver. This work proposes an end-to-end docking approach for ASVs, based on Reinforcement Learning (RL), which teaches an agent to tackle collision- free navigation towards a target pose that allows the berthing of the vessel. The developed research presents a methodology that introduces the concept of illegal actions to facilitate the vessel's exploration during the learning process. This method improves the adopted Actor-Critic (AC) framework by accelerating the agent's optimization by approximately 38.02%. A set of comprehensive experiments demonstrate the accuracy and robustness of the presented method in scenarios with simulated environmental constraints (Beaufort Scale and Douglas Sea Scale), and a diversity of docking structures. Validation with two different real ASVs in both controlled and real environments demonstrates the ability of this method to enable safe docking maneuvers without prior knowledge of the scenario.
2024
Autores
Campos, DF; Goncalves, EP; Campos, HJ; Pereira, MI; Pinto, AM;
Publicação
JOURNAL OF FIELD ROBOTICS
Abstract
The increasing adoption of robotic solutions for inspection tasks in challenging environments is becoming increasingly prevalent, particularly in the offshore wind energy industry. This trend is driven by the critical need to safeguard the integrity and operational efficiency of offshore infrastructure. Consequently, the design of inspection vehicles must comply with rigorous requirements established by the offshore Operation and Maintenance (O&M) industry. This work presents the design of an autonomous surface vehicle (ASV), named Nautilus, specifically tailored to withstand the demanding conditions of offshore O&M scenarios. The design encompasses both hardware and software architectures, ensuring Nautilus's robustness and adaptability to the harsh maritime environment. It presents a compact hull capable of operating in moderate sea states (wave height up to 2.5 m), with a modular hardware and software architecture that is easily adapted to the mission requirements. It has a perception payload and communication system for edge and real-time computing, communicates with a Shore Control Center and allows beyond visual line-of-sight operations. The Nautilus software architecture aims to provide the necessary flexibility for different mission requirements to offer a unified software architecture for O&M operations. Nautilus's capabilities were validated through the professional testing process of the ATLANTIS Test Center, involving operations in both near-real and real-world environments. This validation process culminated in Nautilus's reaching a Technology Readiness Level 8 and became the first ASV to execute autonomous tasks at a floating offshore wind farm located in the Atlantic.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.