Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2022

Application of a Design for Excellence Methodology for a Wireless Charger Housing in Underwater Environments

Autores
Pereira, PNDAD; Campilho, RDSG; Pinto, AMG;

Publicação
MACHINES

Abstract
A major effort is put into the production of green energy as a countermeasure to climatic changes and sustainability. Thus, the energy industry is currently betting on offshore wind energy, using wind turbines with fixed and floating platforms. This technology can benefit greatly from interventive autonomous underwater vehicles (AUVs) to assist in the maintenance and control of underwater structures. A wireless charger system can extend the time the AUV remains underwater, by allowing it to charge its batteries through a docking station. The present work details the development process of a housing component for a wireless charging system to be implemented in an AUV, addressed as wireless charger housing (WCH), from the concept stage to the final physical verification and operation stage. The wireless charger system prepared in this research aims to improve the longevity of the vehicle mission, without having to return to the surface, by enabling battery charging at a docking station. This product was designed following a design for excellence (DfX) and modular design philosophy, implementing visual scorecards to measure the success of certain design aspects. For an adequate choice of materials, the Ashby method was implemented. The structural performance of the prototypes was validated via a linear static finite element analysis (FEA). These prototypes were further physically verified in a hyperbaric chamber. Results showed that the application of FEA, together with well-defined design goals, enable the WCH optimisation while ensuring up to 75% power efficiency. This methodology produced a system capable of transmitting energy for underwater robotic applications.

2022

A Practical Survey on Visual Odometry for Autonomous Driving in Challenging Scenarios and Conditions

Autores
Agostinho, LR; Ricardo, NM; Pereira, MI; Hiolle, A; Pinto, AM;

Publicação
IEEE ACCESS

Abstract
The expansion of autonomous driving operations requires the research and development of accurate and reliable self-localization approaches. These include visual odometry methods, in which accuracy is potentially superior to GNSS-based techniques while also working in signal-denied areas. This paper presents an in-depth review of state-of-the-art visual and point cloud odometry methods, along with a direct performance comparison of some of these techniques in the autonomous driving context. The evaluated methods include camera, LiDAR, and multi-modal approaches, featuring knowledge and learning-based algorithms, which are compared from a common perspective. This set is subject to a series of tests on road driving public datasets, from which the performance of these techniques is benchmarked and quantitatively measured. Furthermore, we closely discuss their effectiveness against challenging conditions such as pronounced lighting variations, open spaces, and the presence of dynamic objects in the scene. The research demonstrates increased accuracy in point cloud-based methods by surpassing visual techniques by roughly 33.14% in trajectory error. This survey also identifies a performance stagnation in state-of-the-art methodologies, especially in complex conditions. We also examine how multi-modal architectures can circumvent individual sensor limitations. This aligns with the benchmarking results, where the multi-modal algorithms exhibit greater consistency across all scenarios, outperforming the best LiDAR method (CT-ICP) by 5.68% in translational drift. Additionally, we address how current AI advances constitute a way to overcome the current development plateau.

2022

Multiple Vessel Detection in Harsh Maritime Environments

Autores
Duarte, DF; Pereira, MI; Pinto, AM;

Publicação
MARINE TECHNOLOGY SOCIETY JOURNAL

Abstract
Recently, research concerning the navigation of autonomous surface vehicles (ASVs) has been increasing. However, a large-scale implementation of these vessels is still held back by several challenges such as multi-object tracking. Attaining accurate object detection plays a big role in achieving successful tracking. This article presents the development of a detection model with an image-based Con-volutional Neural Network trained through transfer learning, a deep learning tech-nique. To train, test, and validate the detector module, data were collected with the SENSE ASV by sailing through two nearby ports, Leixoes and Viana do Castelo, and recording video frames through its on-board cameras, along with a Light De-tection And Ranging, GPS, and Inertial Measurement Unit data. Images were ex-tracted from the collected data, composing a manually annotated dataset with nine classes of different vessels, along with data from other open-source maritime datasets. The developed model achieved a class mAP@[.5 .95] (mean average precision) of 89.5% and a clear improvement in boat detection compared to a multi-purposed state-of-the-art detector, YOLO-v4, with a 22.9% and 44.3% increase in the mAP with an Intersection over Union threshold of 50% and the mAP@[.5 .95], respectively. It was integrated in a detection and tracking system, being able to continuously detect nearby vessels and provide sufficient informa-tion for simple navigation tasks.

2022

Multiple Vessel Detection in Harsh Maritime Environments

Autores
Duarte, DF; Pereira, MI; Pinto, AM;

Publicação
Marine Technology Society Journal

Abstract
Abstract Recently, research concerning the navigation of autonomous surface vehicles (ASVs) has been increasing. However, a large-scale implementation of these vessels is still held back by several challenges such as multi-object tracking. Attaining accurate object detection plays a big role in achieving successful tracking. This article presents the development of a detection model with an image-based Convolutional Neural Network trained through transfer learning, a deep learning technique. To train, test, and validate the detector module, data were collected with the SENSE ASV by sailing through two nearby ports, Leixões and Viana do Castelo, and recording video frames through its on-board cameras, along with a Light Detection And Ranging, GPS, and Inertial Measurement Unit data. Images were extracted from the collected data, composing a manually annotated dataset with nine classes of different vessels, along with data from other open-source maritime datasets. The developed model achieved a class mAP@[.5 .95] (mean average precision) of 89.5% and a clear improvement in boat detection compared to a multi-purposed state-of-the-art detector, YOLO-v4, with a 22.9% and 44.3% increase in the mAP with an Intersection over Union threshold of 50% and the mAP@[.5 .95], respectively. It was integrated in a detection and tracking system, being able to continuously detect nearby vessels and provide sufficient information for simple navigation tasks.

2022

Decoding Reinforcement Learning for newcomers

Autores
Neves, F; F. Reis, M; Andrade, G; Aguiar, AP; Pinto, AM;

Publicação

Abstract
<p>An intelligible step-by-step Reinforcement Learning (RL) problem formulation and the availability of an easy-to-use demonstrative toolbox for students at various levels (e.g., undergraduate, bachelor, master, doctorate), researchers and educators. This tool facilitates the familiarization with the key concepts of RL, its problem formulation and implementation. The results demonstrated in this paper are produced by a Python program that is released open-source, along with other lecture materials to reduce the learning barriers in such innovative research topic in robotics.</p> <p>The RL paradigm is showing promising results as a generic purpose framework for solving decision-making problems (e.g., robotics, games, finance). In this work, RL is used for solving a robotics 2D navigational problem where the robot needs to avoid collisions with obstacles while aiming to reach a goal point. A navigational problem is simple and convenient for educational purposes, since the outcome is unambiguous (e.g., the goal is reached or not, a collision happened or not). Thus, the intent is to accelerate the adoption of RL techniques in the field of mobile robotics.</p> <p>Motivate and promote the adoption of RL techniques to solve decision-making problems, specifically in robotics. </p> <p>Due to a lack of accessible educational and demonstrative toolboxes concerning the field of RL, this work combines theoretical exposition with an accessible open-source graphical interactive toolbox to facilitate the apprehension.</p> <p>This study aims to reduce the learning barriers and inspire young students, researchers and educators to use RL as an obvious tool to solve robotics problems.</p>

2022

Feedfirst: Intelligent monitoring system for indoor aquaculture tanks

Autores
Teixeira, B; Lima, AP; Pinho, C; Viegas, D; Dias, N; Silva, H; Almeida, J;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
The Feedfirst Intelligent Monitoring System is a novel tool for intelligent monitoring of fish nurseries in aquaculture scenarios, mainly focusing on monitoring three essential items: water quality control, biomass estimation, and automated feeding. The system is based on machine vision techniques for fish larvae population size detection, and larvae biomass estimation is monitored through size measurement. We also show that the perception-actuation loop in automated fish tanks can be closed by using the vision system output to influence feeding procedures. The proposed solution was tested in a real tank in an aquaculture setting with real-time performance and logging capabilities.

  • 23
  • 173