Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2024

Variable Structure Controller for Energy Savings in an Underwater Sensor Platform

Autores
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publicação
SENSORS

Abstract
This paper introduces a new variable structure controller designed for depth control of an autonomous underwater sensor platform equipped with a variable buoyancy module. To that end, the prototype linear model is presented, and a finite element-based method is used to estimate one of its parameters, the hull deformation due to pressure. To manage potential internal disturbances like hull deformation or external disturbances like weight changes, a disturbance observer is developed. An analysis of the observer steady-state estimation error in relation to input disturbances and system parameter uncertainties is developed. The locations of the observer poles according to its parameters are also identified. The variable structure controller is developed, keeping energy savings in mind. The proposed controller engages when system dynamics are unfavorable, causing the vehicle to deviate from the desired reference, and disengages when dynamics are favorable, guiding the vehicle toward the target reference. A detailed analysis determines the necessary switching control actions to ensure the system reaches the desired reference. Finally, simulations are run to compare the proposed controller's performance with that of PID-based controllers recently developed in the literature, assessing dynamic response and energy consumption under various operating conditions. Both the VBM- and propeller-actuated vehicles were evaluated. The results demonstrate that the proposed controller achieves an average energy consumption reduction of 22% compared to the next most efficient PID-based controller for the VBM-actuated vehicle, though with some impact on control performance.

2024

A Demonstrator for Future Fiber-Optic Active SMART Repeaters

Autores
Cruz, NA; Silva, A; Zabel, F; Ferreira, B; Jesus, SM; Martins, MS; Pereira, E; Matos, T; Viegas, R; Rocha, J; Faria, J;

Publicação
OCEANS 2024 - SINGAPORE

Abstract
The deep-sea environment still presents many challenges for systematic, comprehensive data acquisition. The current generation of SMART cables incorporates low-power sensors in long-range telecommunication cables to improve knowledge of ocean variables, aid in earthquake and tsunami warnings, and enhance coastal protection. The K2D Project seeks to expand SMART cables' capabilities by increasing the diversity of sensors along deep water cables, integrating active devices, and leveraging mobile platforms like deep-water AUVs, thereby improving spatial coverage and advancing ocean monitoring technology. This paper discusses a demonstration of these capabilities, focusing on the description of the main building blocks developed along the project, with results from a sea deployment in September 2023.

2024

A Clustering-Aided Template Matching Algorithm Towards Underwater SLAM Using Imaging Sonar

Autores
Oliveira, J; Ferreira, M; Cruz, A;

Publicação
Oceans Conference Record (IEEE)

Abstract
In man-made marine infrastructures, elements such as pillars, cables or ducts are common, which provide distinctive landmarks for Simultaneous Localization and Mapping purposes. In this work, we concentrate on the application of template matching to acoustic imagery for landmark detection and tracking, building on the modeling of common elements in marine environments. The proposed algorithm extends on the original method by employing a density-based clustering technique for match candidate selection and leveraging vehicle inertial information to identify regions of interest in the acquired images, tackling performance deterioration resulting from motion-induced image deformation and overall acoustic feature ambiguity. Experimental results are provided based on datasets collected in a testing pool environment. © 2024 IEEE.

2024

A Model Predictive Control Approach to Enhance Obstacle Avoidance While Performing Autonomous Docking

Autores
Pinto A.; Ferreira B.M.; Cruz N.; Soares S.P.; Cunha J.B.;

Publicação
Oceans Conference Record (IEEE)

Abstract
In the present paper, we propose a control approach to perform docking of an autonomous surface vehicle (ASV) while avoiding surrounding obstacles. This control architecture is composed of two sequential controllers. The first outputs a feasible trajectory between the vessel's initial and target state while avoiding obstacles. This trajectory also minimizes the vehicle velocity while performing the maneuvers to increase the safety of onboard passengers. The second controller performs trajectory tracking while accounting for the actuator's physical limits (extreme actuation values and the rate of change). The method's performance is tested on simulation, as it enables a reliable ground truth method to validate the control architecture proposed.

2024

Real-Time Geo-Referenced Acoustic Tracking for Underwater Diver Localization with Event Detection

Autores
Villa, MP; Graca, A; Ferreira, M; Piga, A; Silveira, T; Segal, B; Cruz, N; Alves, JC; Crivellaro, M; Souza, R; Soldateli, M;

Publicação
Oceans Conference Record (IEEE)

Abstract
This paper investigates the real-time tracking capabilities of the Long Baseline (LBL) acoustic tracking system, developed by INESC TEC, for near-shore monitoring applications with human divers. The study aims to determine the system's suitability for environmental monitoring under challenging conditions, such as very shallow water and areas close to the coastline, where acoustic multipath effects are prevalent and can cause significant measurement errors. To mitigate these errors, a two-stage outlier rejection algorithm was implemented. The algorithm's performance was evaluated by comparing the measurement data at each stage and assessing the reduction in erroneous readings. The tracking performance was evaluated based on accuracy and repeatability. Two dives were performed, during which positions marked using the developed system were compared with GNSS data. © 2024 IEEE.

2024

Underwater Volumetric Mapping using Imaging Sonar and Free-Space Modeling Approach

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024)

Abstract
Lack of information and perceptual ambiguity are key problems in sonar-based mapping applications. We propose a technique for mapping of underwater environments, building on the finite, positive, sonar beamwidth. Our approach models the free-space covered by each emitted acoustic pulse, employing volumetric techniques to create grid-based submaps of the unoccupied water volumes through images collected from imaging sonars. A representation of the occupied space is obtained by exploration of the free-space frontier. Special attention is given to acoustic image preparation and segmentation. Experimental results are provided based on real data collected from a dam shaft scenario.

  • 3
  • 180