Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2019

Optical device for in situ monitoring of suspended particulate matter and organic/inorganic distinguish

Autores
Matos, T; Faria, CL; Martins, M; Henriques, R; Goncalves, L;

Publicação
OCEANS 2019 - Marseille, OCEANS Marseille 2019

Abstract
A cost-effective (less than 20€) and low-power device is present for in situ continuous monitoring of suspended sediments (SPM) concentration in estuarine and coastal areas. The sensor uses nephelometric technique for SPM values less than 20g/L and backscatter technique for higher ones. A transmitted infrared (IR) and ultraviolet (UV) channels are used to perform the distinguish of inorganic from organic matter in the suspended particles. It is explained the design and built of the sensor as its calibration and preparation for in field tests. The sensor was deployed for one week in a small dock in the estuarine zone of Cavado river (Esposende, Portugal) where is analyzed the SPM and organic/inorganic matter change with the tidal cycles.

2019

Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment

Autores
Matos, T; Faria, CL; Martins, MS; Henriques, R; Gomes, PA; Goncalves, LM;

Publicação
SENSORS

Abstract
A cost-effective optical sensor for continuous in-situ monitoring of turbidity and suspended particulate matter concentration (SPM), with a production cost in raw materials less than 20 (sic), is presented for marine or fluvial applications. The sensor uses an infrared LED and three photodetectors with three different positions related to the light source-135 degrees, 90 degrees and 0 degrees-resulting in three different types of light detection: backscattering, nephelometry and transmitted light, respectively. This design allows monitoring in any type of environment, offering a wide dynamic range and accuracy for low and high turbidity or SPM values. An ultraviolet emitter-receiver pair is also used to differentiate organic and inorganic matter through the differences in absorption at different wavelengths. The optical transducers are built in a watertight structure with a radial configuration where a printed circuit board with the electronic signal coupling is assembled. An in-lab calibration of the sensor was made to establish a relation between suspended particulate matter (SPM) or the turbidity (NTU) to the photodetectors' electrical output value in Volts. Two di fferent sizes of seashore sand were used (180 mu m and 350 mu m) to evaluate the particle size susceptibility. The sensor was tested in a fluvial environment to evaluate SPM change during sediment transport caused by rain, and a real test of 22 days continuous in-situ monitoring was realized to evaluate its performance in a tidal area. The monitoring results were analysed, showing the SPM change during tidal cycles as well as the influence of the external light and biofouling problems.

2019

Wideband and Wide Beam Polyvinylidene Difluoride (PVDF) Acoustic Transducer for Broadband Underwater Communications

Autores
Martins, MS; Faria, CL; Matos, T; Goncalves, LM; Cabral, J; Silva, A; Jesus, SM;

Publicação
SENSORS

Abstract
The advances in wireless communications are still very limited when intended to be used on Underwater Communication Systems mainly due to the adverse proprieties of the submarine channel to the acoustic and radio frequency (RF) waves propagation. This work describes the development and characterization of a polyvinylidene difluoride ultrasound transducer to be used as an emitter in underwater wireless communications. The transducer has a beam up to 10 degrees x 70 degrees degrees and a usable frequency band up to 1 MHz. The transducer was designed using Finite Elements Methods and compared with real measurements. Pool trials show a transmitting voltage response (TVR) of approximately 150 dB re mu Pa/V@1 m from 750 kHz to 1 MHz. Sea trials were carried in Ria Formosa, Faro (Portugal) over a 15 m source-receiver communication link. All the signals were successfully detected by cross-correlation using 10 chirp signals between 10 to 900 kHz.

2019

A Note on Convergence of Finite Differences Schemata for Gas Network Simulation

Autores
Azevedo-Perdicoulis, T; Perestrelo, F; Almeida, R;

Publicação
2019 22nd International Conference on Process Control (PC19)

Abstract

2019

A Note on Convergence of Finite Differences Schemata for Gas Network Simulation

Autores
Azevedo Perdicoulis, TP; Perestrelo, F; Almeida, R;

Publicação
PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19)

Abstract
Pressurised networks are widely used to transport gas through extensive distances. To secure the gas transport at safety levels and also economic viability, the networks are thoroughly monitored. Paramount to network control and analysis is the modelling of the gas dynamics in the pipelines and its consequent simulation. In this work, the pipeline is represented by a quasi-hyperbolic PDE, whose exact solution is not easy to withdraw, and in alternative we opt for an approximation. The construction of the initial function, very important to obtain a good approximation, is done using a separation of variables. Special relevance is given to issues as consistency, stability and convergence in order to evaluate a class of FD methods for the solution of gas network models, in particular the quasi-hyperbolic equation. Horizontal pipelines are considered as well as some particular centred schema for an inclined pipeline.

2018

An FPGA array for cellular genetic algorithms: Application to the minimum energy broadcast problem

Autores
dos Santos, PV; Alves, JC; Ferreira, JC;

Publicação
MICROPROCESSORS AND MICROSYSTEMS

Abstract
The genetic algorithm is a general purpose optimization metaheuristic for solving complex optimization problems. Because the algorithm usually requires a large number of iterations to evolve a population of solutions to good final solutions, it normally exhibits long execution times, especially if running on low-performance conventional processors. In this work, we present a scalable computing array to parallelize and accelerate the execution of cellular GAs (cGAs). This is a variant of genetic algorithms which can conveniently exploit the coarse-grain parallelism afforded by custom parallel processing. The proposed architecture targets Xilinx FPGAs and was implemented as an auxiliary processor of an embedded soft-core CPU (MicroBlaze). To facilitate the customization for different optimization problems, a high-level synthesis design flow is proposed where the problem-dependent operations are specified in C++ and synthesised to custom hardware, thus demanding of the programmer only minimal knowledge of low-level digital design for FPGAs. To demonstrate the efficiency of the array processor architecture and the effectiveness of the design methodology, the development of a hardware solver for the minimum energy broadcast problem in wireless ad hoc networks is employed as a use case. Implementation results for a Virtex-6 FPGA show significant speedups, especially when comparing to embedded processors used in current FPGA devices.

  • 60
  • 173