Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRAS

2018

Control-law for Oil Spill Mitigation with an Autonomous Surface Vehicle

Autores
Pedrosa, D; Dias, A; Martins, A; Almeida, J; Silva, E;

Publicação
2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO)

Abstract
Oil spill incidents in the sea or harbors occur with some regularity during exploration, production, and transport of petroleum products. In order to mitigate the impact of the oil spill in the marine life, immediate, safety, effective and ecofriendly actions must be taken. Autonomous vehicles can assume an important contribution by establishing a cooperative and coordinated intervention. This paper presents the development of a path planning control-law methods for an autonomous surface vehicle (ASV) being able to contour the oil spill while is deploying microorganisms and nutrients (bioremediation) capable of mitigating and contain the oil spill spread with the collaboration of a UAV vehicle. An oil spill simulation scenario was developed in Gazebo to support the evaluation of the cooperative actions between the ASV and UAV and to infer the ASV path planning for each one of the proposed control-law methods.

2018

EVA a hybrid ROV/AUV for underwater mining operations support

Autores
Martins, A; Almeida, J; Almeida, C; Matias, B; Kapusniak, S; Silva, E;

Publicação
2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO)

Abstract
This paper presents EVA, a new concept for an hybrid ROV/AUV designed to support the underwater operation of an underwater mining machine, developed in the context of the European H2020 R&D VAMOS Project. This project is briefly presented, introducing the main components and concepts, providing the reader with clear picture of the operational scenario and allowing to understand better the functionality requirements of the support robotic vehicle developed. The design of EVA is detailed presented, addressing the mechanical design, hardware architecture, sensor system and navigation and control. The results of EVA both in water test tank, in the ! VAMOS! Field trials in Lee Moor, UK, and in an harbor scenario are presented and discussed

2018

Supervised vs Unsupervised Approaches for Real Time Hyperspectral Imaging Maritime Target Detection

Autores
Freitas, S; Silva, H; Almeida, J; Martins, A; Silva, E;

Publicação
2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO)

Abstract
This paper addresses the use of supervised and unsupervised methods for classification of hyperspectral imaging data in maritime border surveillance domain. In this work supervised (SVM) and unsupervised (HYDADE) approaches were implemented. An evaluation benchmark was performed in order to compare methods results using real hyperspectral imaging data taken from an Unmanned Aerial Vehicle in maritime border surveillance scenario.

2018

VAMOS! Underwater Mining Machine Navigation System

Autores
Almeida, J; Ferreira, A; Matias, B; Lomba, C; Martins, A; Silva, E;

Publicação
2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)

Abstract
Limited perception capabilities underwater shrink the envelope of effective localization techniques that can be applied in this environment. Long-term localization in six degrees of freedom can only be achieved by combining different sources of information. A multiple vehicle underwater localization solution, for localizing an underwater mining vehicle and its support vessel, is presented in this paper. The surface vessel carries a short baseline network, that interact with the inverted ultra-short baseline, carried by the underwater mining vehicle. A multiple antenna GNSS system provides data for localizing the surface vessel and to georeference the short baseline array. Localization of the mining vehicle results from a data fusion approach, that combines multiple sources of sensor information using the Extended Kalman Filter (EKF) framework. The developed solutions were applied in the context of the VAMOS! European project. Long-term real time position errors below 0.2 meters, for the underwater machine, and 0.02 meters, for the surface vessel, were accomplished in the field. All presented results are based on data acquired in a real scenario.

2018

Positioning, Navigation and Awareness of the VAMOS! Underwater Robotic Mining System

Autores
Almeida, J; Martins, A; Almeida, C; Dias, A; Matias, B; Ferreira, A; Jorge, P; Martins, R; Bleier, M; Nuchter, A; Pidgeon, J; Kapusniak, S; Silva, E;

Publicação
2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)

Abstract
This paper presents the positioning, navigation and awareness (PNA) system developed for the Underwater Robotic Mining System of the VAMOS! project [1]. It describes the main components of the VAMOS! system, the PNA sensors in each of those components, the global architecture of the PNA system, and its main subsystems: Position and Navigation, Real-time Mine Modeling, 3D Virtual reality HMI and Real-time grade system. General results and lessons learn during the first mining field trial in Lee Moor, Devon, UK during the months of September and October 2017 are presented.

2018

Underwater Acoustic Signal Detection and Identification Study for Acoustic Tracking Applications

Autores
Viana, N; Guedes, P; Machado, D; Pedrosa, D; Dias, A; Almeida, JM; Martins, A; Silva, E;

Publicação
OCEANS 2018 MTS/IEEE CHARLESTON

Abstract
In this work an acoustic tag detector was developed for the integration in a mobile robotic fish tracking architecture. The present paper presents both the developed system and preliminary results with particular emphasis of the developed solution with the tag manufacturer receiver. The work has been developed in the context of the MYTAG Portuguese RD project, addressing the study and characterisation of the European flounder migrations in the northern estuarine environments of Portugal. The detector is to be integrated in a tracking system using autonomous surface vehicles and fixed buoys. The main objective is to detect tags inserted surgically in flounders for the MYTAG project, while simultaneously identifying them. A detector solution is presented allowing for the detection and identification of V7 VEMCO tags and preliminary comparative results with the commercially available manufacturer receivers are also presented and discussed.

  • 69
  • 180