Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CSE

2021

SyVMO: Synchronous Variable Markov Oracle for Modeling and Predicting Multi-part Musical Structures

Autores
Carvalho, N; Bernardes, G;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
We present SyVMO, an algorithmic extension of the Variable Markov Oracle algorithm, to model and predict multi-part dependencies from symbolic music manifestations. Our model has been implemented as a software application named INCITe for computer-assisted algorithmic composition. It learns variable amounts of musical data from style-agnostic music represented as multiple viewpoints. To evaluate the SyVMO model within INCITe, we adopted the Creative Support Index survey and semi-structured interviews. Four expert composers participated in the evaluation using both personal and exogenous music corpus of variable size. The results suggest that INCITe shows great potential to support creative music tasks, namely in assisting the composition process. The use of SyVMO allowed the creation of polyphonic music suggestions from style-agnostic sources while maintaining a coherent melodic structure. © 2021, Springer Nature Switzerland AG.

2021

Assessing the quality of health-related Wikipedia articles with generic and specific metrics

Autores
Couto, L; Lopes, CT;

Publicação
WEB CONFERENCE 2021: COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2021)

Abstract
Wikipedia is an online, free, multi-language, and collaborative encyclopedia, currently one of the most significant information sources on the web. The open nature of Wikipedia contributions raises concerns about the quality of its information. Previous studies have addressed this issue using manual evaluations and proposing generic measures for quality assessment. In this work, we focus on the quality of health-related content. For this purpose, we use general and health-specific features from Wikipedia articles to propose health-specific metrics. We evaluate these metrics using a set of Wikipedia articles previously assessed by WikiProject Medicine. We conclude that it is possible to combine generic and specific metrics to determine health-related content's information quality. These metrics are computed automatically and can be used by curators to identify quality issues. Along with the explored features, these metrics can also be used in approaches that automatically classify the quality of Wikipedia health-related articles.

2021

Geohazards Monitoring and Assessment Using Multi-Source Earth Observation Techniques

Autores
Sousa, JJ; Liu, G; Fan, JH; Perski, Z; Steger, S; Bai, SB; Wei, LH; Salvi, S; Wang, Q; Tu, JA; Tong, LQ; Mayrhofer, P; Sonnenschein, R; Liu, SJ; Mao, YC; Tolomei, C; Bignami, C; Atzori, S; Pezzo, G; Wu, LX; Yan, SY; Peres, E;

Publicação
REMOTE SENSING

Abstract
Geological disasters are responsible for the loss of human lives and for significant economic and financial damage every year. Considering that these disasters may occur anywhere-both in remote and/or in highly populated areas-and anytime, continuously monitoring areas known to be more prone to geohazards can help to determine preventive or alert actions to safeguard human life, property and businesses. Remote sensing technology-especially satellite-based-can be of help due to its high spatial and temporal coverage. Indeed, data acquired from the most recent satellite missions is considered suitable for a detailed reconstruction of past events but also to continuously monitor sensitive areas on the lookout for potential geohazards. This work aims to apply different techniques and methods for extensive exploitation and analysis of remote sensing data, with special emphasis given to landslide hazard, risk management and disaster prevention. Multi-temporal SAR (Synthetic Aperture Radar) interferometry, SAR tomography, high-resolution image matching and data modelling are used to map out landslides and other geohazards and to also monitor possible hazardous geological activity, addressing different study areas: (i) surface deformation of mountain slopes and glaciers; (ii) land surface displacement; and (iii) subsidence, landslides and ground fissure. Results from both the processing and analysis of a dataset of earth observation (EO) multi-source data support the conclusion that geohazards can be identified, studied and monitored in an effective way using new techniques applied to multi-source EO data. As future work, the aim is threefold: extend this study to sensitive areas located in different countries; monitor structures that have strategic, cultural and/or economical relevance; and resort to artificial intelligence (AI) techniques to be able to analyse the huge amount of data generated by satellite missions and extract useful information in due course.

2021

Development and Deployment of Complex Robotic Applications using Containerized Infrastructures

Autores
Melo, P; Arrais, R; Veiga, G;

Publicação
19th IEEE International Conference on Industrial Informatics, INDIN 2021, Palma de Mallorca, Spain, July 21-23, 2021

Abstract
There are significant difficulties in deploying and reusing application code within the robotics community. Container technology proves to be a viable solution for such problems, as containers isolate application code and all its dependencies from the surrounding computational environment. They are also light, fast and performant. Manual generation of configuration files required by orchestration tools such as Docker Compose is very time-consuming, especially for more complex scenarios. In this paper a solution is presented to ease the development and deployment of Robot Operating System (ROS) packages using containers, by automatically generating all files used by Docker Compose to both containerize and orchestrate multiple ROS workspaces, supporting multiple ROS distributions and multi-robot scenarios. The proposed solution also generates Dockerfiles and is capable of building new Docker images at run-time, given a list of desired ROS packages to be containerized. Integration with existing Docker images is supported, even if non-ROS-related. After an analysis of existing solutions and techniques for containerizing ROS nodes, the multi-stage pipeline adopted by the proposed solution for file generation is detailed. Then, a real usage example of the proposed tool is presented, showcasing how it an aid both the development and deployment of new ROS packages and features. © 2021 IEEE.

2021

Derzis: A Path Aware Linked Data Crawler

Autores
dos Santos, AF; Leal, JP;

Publicação
10th Symposium on Languages, Applications and Technologies, SLATE 2021, July 1-2, 2021, Vila do Conde/Póvoa de Varzim, Portugal.

Abstract
Consuming Semantic Web data presents several challenges, from the number of datasets it is composed of, to the (very) large size of some of those datasets and the uncertain availability of querying endpoints. According to its core principles, accessing linked data can be done simply by dereferencing the IRIs of RDF resources. This is a light alternative both for clients and servers when compared to dataset dumps or SPARQL endpoints. The linked data interface does not support complex querying, but using it recursively may suffice to gather information about RDF resources, or to extract the relevant sub-graph which can then be processed and queried using other methods. We present Derzis1, an open source semantic web crawler capable of traversing the linked data cloud starting from a set of seed resources. Derzis maintains information about the paths followed while crawling, which allows to define property path-based restrictions to the crawling frontier.

2021

AuthCrowd: Author Name Disambiguation and Entity Matching using Crowdsourcing

Autores
Correia, A; Guimaraes, D; Paulino, D; Jameel, S; Schneider, D; Fonseca, B; Paredes, H;

Publicação
PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD)

Abstract
Despite decades of research and development in named entity resolution, dealing with name ambiguity is still a challenging issue for many bibliometric-enhanced information retrieval (IR) tasks. As new bibliographic datasets are created as a result of the upward growth of publication records worldwide, more problems arise when considering the effects of errors resulting from missing data fields, duplicate entities, misspellings, extra characters, etc. As these concerns tend to be of large-scale, both the general consistency and the quality of electronic data are largely affected. This paper presents an approach to handle these name ambiguity problems through the use of crowdsourcing as a complementary means to traditional unsupervised approaches. To this end, we present "AuthCrowd", a crowdsourcing system with the ability to decompose named entity disambiguation and entity matching tasks. Experimental results on a real-world dataset of publicly available papers published in peer-reviewed venues demonstrate the potential of our proposed approach for improving author name disambiguation. The findings further highlight the importance of adopting hybrid crowd-algorithm collaboration strategies, especially for handling complexity and quantifying bias when working with large amounts of data.

  • 76
  • 220