Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Filipe Joel Soares

2022

The Role of Hydrogen Electrolysers in the Frequency Containment Reserve: A Case Study in the Iberian Peninsula up to 2040

Autores
Ribeiro F.J.; Lopes J.A.P.; Fernandes F.S.; Soares F.J.; Madureira A.G.;

Publicação
SEST 2022 - 5th International Conference on Smart Energy Systems and Technologies

Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) as highly controllable loads in the context of the Frequency Containment Reserve (FCR), in future operation scenarios on the Iberian Peninsula (IP). The research question is whether HEs can mitigate system insecurity regarding frequency or Rate of Change of Frequency (RoCoF) in critical periods of high renewable energy penetration (i.e. low system inertia), due to the fact that these periods will coincide with high volume of green hydrogen production. The proposed simulation platform for analysis consists of a simplified dynamic model developed in MATLAB/Simulink. The results obtained illustrate how HEs can outperform conventional generators on the provision of FCR. It is seen that the reference incident of 1GW loss in the IP in a 2040 low inertia scenario does not lead to insecure values of either frequency or Rate of Change of Frequency (RoCoF). On the other hand, an instantaneous loss of inverter-based resources (IBR) generation following a short-circuit may result in RoCoF violating security thresholds. The obtained results suggest that the HEs expected to be installed in the IP in 2040 may contribute to reduce RoCoF in this case, although this mitigation may be insufficient. The existing FCR mechanism does not fully exploit the fast-ramping capability of HEs; reducing measurement acquisiton delay would not improve results.

2023

Real-time management of distributed multi-energy resources in multi-energy networks

Autores
Coelho, A; Iria, J; Soares, F; Lopes, JP;

Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
The replacement of fossil fuel power plants by variable renewable energy sources is reducing the flexibility of the energy system, which puts at risk its security. Exploiting the flexibility of distributed multi-energy resources through aggregators presents a solution for this problem. In this context, this paper presents a new hierarchical model predictive control framework to assist multi-energy aggregators in the network-secure delivery of multi-energy services traded in electricity, natural gas, green hydrogen, and carbon markets. This work builds upon and complements a previous work from the same authors related to bidding strategies for day-ahead markets - it closes the cycle of aggregators' participation in multi-energy markets, i.e., day-ahead bidding and real-time activation of flexibility services. This new model predictive control framework uses the alternating direction method of multipliers on a rolling horizon to negotiate the network-secure delivery of multi-energy services between aggregators and distribution system operators of electricity, gas, and heat networks. We used the new model predictive control framework to conduct two studies. In the first study, we found that considering multi-energy network constraints at both day-ahead and real-time optimization stages produces the most cost-effective and reliable solution to aggregators, outperforming state-of-the-art approaches in terms of cost and network security. In the second study, we found that the adoption of a green hydrogen policy by multi-energy aggregators can reduce their consumption of natural gas and respective CO2 emissions significantly if carbon and green hydrogen prices are competitive.& COPY; 2023 Elsevier Ltd. All rights reserved.

2023

TSO-DSO Coordinated Operational Planning in the Presence of Shared Resources

Autores
Simões, M; Madureira, G; Soares, F; Lopes, JP;

Publicação
2023 IEEE Belgrade PowerTech, PowerTech 2023

Abstract
Electric power systems are currently experiencing a profound change, as increasing amounts of Renewable Energy Sources (RESs) displace conventional forms of generation. This development has gone hand-in-hand with an increasing share of distributed power generation being connected directly to the Distribution Network (DN), and the widespread of other types of Distributed Energy Resources (DERs), such as Energy Storage Sytems (ESSs), Electric Vehicles (EVs), and active (flexible) consumers. As these trends are expected to continue, this will require a profound revision of the way Transmission System Operators (TSOs) and Distribution System Operators (DSOs) interact with each other to fully benefit from the growing flexibility that is available at the DN level. In this work we propose a new tool for the coordinated operational planning of transmission and distribution systems, considering the existence of shared resources that can be simultaneously used by TSO and DSOs for the optimal operation of their networks. The tool uses advanced distributed optimization techniques, namely the Alternating Direction Method of Multipliers (ADMM) in order to maintain data privacy of the several agents involved in the optimization problem, and keep the tractability of the problem. The proposed tool is applied to modified IEEE test systems, and the results obtained highlight the benefits of the proposed coordination mechanism to solve problems occurring simultaneously at the transmission and DN-levels. © 2023 IEEE.

2023

TSO-DSO Coordinated Operational Planning in the Presence of Shared Resources

Autores
Simoes, M; Madureira, AG; Soares, F; Lopes, JP;

Publicação
2023 IEEE BELGRADE POWERTECH

Abstract
Electric power systems are currently experiencing a profound change, as increasing amounts of Renewable Energy Sources (RESs) displace conventional forms of generation. This development has gone hand-in-hand with an increasing share of distributed power generation being connected directly to the Distribution Network (DN), and the widespread of other types of Distributed Energy Resources (DERs), such as Energy Storage Sytems (ESSs), Electric Vehicles (EVs), and active (flexible) consumers. As these trends are expected to continue, this will require a profound revision of the way Transmission System Operators (TSOs) and Distribution System Operators (DSOs) interact with each other to fully benefit from the growing flexibility that is available at the DN level. In this work we propose a new tool for the coordinated operational planning of transmission and distribution systems, considering the existence of shared resources that can be simultaneously used by TSO and DSOs for the optimal operation of their networks. The tool uses advanced distributed optimization techniques, namely the Alternating Direction Method of Multipliers (ADMM) in order to maintain data privacy of the several agents involved in the optimization problem, and keep the tractability of the problem. The proposed tool is applied to modified IEEE test systems, and the results obtained highlight the benefits of the proposed coordination mechanism to solve problems occurring simultaneously at the transmission and DN-levels.

2023

Evaluation of the economic, technical, and environmental impacts of multi-energy system frameworks in distribution networks

Autores
Coelho, A; Soares, F; Iria, J; Lopes, JP;

Publicação
2023 IEEE BELGRADE POWERTECH

Abstract
This paper presents a general comparison between network-secure and network-free optimization frameworks to manage flexible multi-energy resources. Both frameworks were implemented in a test case that includes electricity, gas, and heat distribution networks. Several potential scenarios for the decarbonization of the multi-energy system were simulated. The economic, technical, and environmental impacts were compiled. The network-secure framework is highly recommended to avoid service disruptions due to network violations, but its implementation comes with a price - overall operational costs increase, sometimes substantially.

2012

Initial Findings of ‘MERGE’ (Mobile Energy Resources in Grids of Electricity) - A European Commission Funded Project Addressing the Impact of the Roll-Out of Electric and Plug-in Hybrid Vehicles on Grid Infrastructure -

Autores
E. T., B; J. A. Pecas, L; F. J., S; D., R; N., H; K., S; M., F;

Publicação
International Journal of Automotive Engineering

Abstract

  • 12
  • 17