Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2019

Semi-Active Vibration Control of a Non-Collocated Civil Structure Using Evolutionary-Based BELBIC

Autores
Cesar, MB; Coelho, JP; Goncalves, J;

Publicação
ACTUATORS

Abstract
A buildings resilience to seismic activity can be increased by providing ways for the structure to dynamically counteract the effect of the Earth's crust movements. This ability is fundamental in certain regions of the globe, where earthquakes are more frequent, and can be achieved using different strategies. State-of-the-art anti-seismic buildings have, embedded on their structure, mostly passive actuators such as base isolation, Tuned Mass Dampers (TMD) and viscous dampers that can be used to reduce the effect of seismic or even wind induced vibrations. The main disadvantage of this type of building vibration reduction strategies concerns their inability to adapt their properties in accordance to both the excitation signal or structural behaviour. This adaption capability can be promoted by adding to the building active type actuators operating under a closed-loop. However, these systems are substantially larger than passive type solutions and require a considerable amount of energy that may not be available during a severe earthquake due to power grid failure. An intermediate solution between these two extremes is the introduction of semi-active actuators such as magneto-rheological dampers. The inclusion of magneto-rheological actuators is among one of the most promising semi-active techniques. However, the overall performance of this strategy depends on several aspects such as the actuators number and location within the structure and the vibration sensors network. It can be the case where the installation leads to a non-collocated system which presents additional challenges to control. This paper proposes to tackle the problem of controlling the vibration of a non-collocated three-storey building by means of a brain-emotional controller tuned using an evolutionary algorithm. This controller will be used to adjust the stiffness coefficient of a magneto-rheological actuator such that the building's frame oscillation under earthquake excitation, is mitigated. The obtained results suggest that, using this control strategy, it is possible to reduce the building vibration to secure levels.

2019

Robot Localization Through Optical Character Recognition of Signs

Autores
Pacher, R; Petry, MR;

Publicação
19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019

Abstract
Optical character recognition (OCR) is the process by which the textual content of an image is converted into strings. Localization is the problem of figuring out where one is in a given environment. In this work we approach the application of OCR in robot localization. We develop and test a vision based localization system that is capable of detecting room identification signs present in the environment, recognizing their textual contents and apply them to determine its location referent to a topological map of the environment. A sign detection method based on image segmentation by color and corner detection by contour analysis is developed. The recognition of characters is performed with the application of an open-source OCR engine. Localization is performed through the comparison of sign readings with the textual information embedded in the topological representation of the environment. The algorithm was tested in a dataset of images acquired in a corridor. Experimental results show that the system successfully determines its localization in 83.33% of tested cases. © 2019 IEEE.

2019

Comparison of Algorithms for 3D Reconstruction

Autores
Nunes Masson, JE; Petry, MR;

Publicação
19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019

Abstract
The photogrammetry, 3D reconstruction from images, is an old technique but it's potentials could only be seen after the development of computers and digital photographs. Nowadays it has many applications, as creating scenarios for games, acquiring human expressions, roof inspection, stockpile measurement, high voltage transformer inspection, etc. As new technologies appear, new applications to photogrammetry are created. In this paper the use of available open and closed-source algorithms for 3D reconstruction and texturization is investigated. To achieve this goal, images of a fountain from several points-of-view were used. Next a comparison between several open and closed-source algorithms was performed, evaluating the number of faces, time consumption, RAM memory, GPU memory and the generated textured 3D models. The results obtained demonstrate that with the right setup, current open-source algorithms can achieve results near or better than proprietary software. Regarding the comparison, 3Dflow and MeshRecon presented the most accurate textured 3D models. When comparing quantitative measures, though, MeshRecon presented a slightly better performance in time consumption, but 3Dflow had a better RAM memory usage and a lower quantity of faces with a similar level of details. © 2019 IEEE.

2019

Online inspection system based on machine learning techniques: real case study of fabric textures classification for the automotive industry

Autores
Malaca, P; Rocha, LF; Gomes, D; Silva, J; Veiga, G;

Publicação
JOURNAL OF INTELLIGENT MANUFACTURING

Abstract
This paper focus on the classification, in real-time and under uncontrolled lighting, of fabric textures for the automotive industry. Many industrial processes have spatial constraints that limit the effective control of illumination of their vision based systems, hindering their effectiveness. The ability to overcome these problems using robust classification methods with suitable pre-processing techniques and choice of characteristics will increase the efficiency of this type of solutions with obvious production gains and thus economical. For this purpose, this paper studied and analyzed various pre-processing techniques, and selected the most appropriate fabric characteristics for the considered industrial case scenario. The methodology followed was based on the comparison of two different machine learning classifiers, ANN and SVM, using a large set of samples with a large variability of lightning conditions to faithfully simulate the industrial environment. The obtained solution shows the sensibility of ANN over SVM considering the number of features and the size of the training set, showing the better effectiveness and robustness of the last. The characteristics vector uses histogram equalization, Laws filter and Sobel filter, and multi-scale analysis. By using a correlation based method was possible to reduce the number of features used, achieving a better balanced between processing time and classification ratio.

2019

AdaptPack Studio: Automatic Offline Robot Programming Framework for Factory Environments

Autores
Castro, A; Souza, JP; Rocha, L; Silva, MF;

Publicação
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
The brisk and dynamic environment that factories are facing, both as an internal and an external level, requires a collection of handy tools to solve emerging issues in the industry 4.0 context. Part of the common challenges that appear are related to the increasing demand for high adaptability in the organizations' production lines. Mechanical processes are becoming faster and more adjustable to the production diversity in the Fast Moving Consumer Goods (FMCG). Concerning the previous characteristics, future factories can only remain competitive and profitable if they have the ability to quickly adapt all their production resources in response to inconstant market demands. Having previous concerns in focus, this paper presents a fast and adaptative framework for automated cells modeling, simulation and offline robot programming, focused on palletizing operations. Established as an add-on for the Visual Components (VC) 3D manufacturing simulation software, the proposed application allows performing fast layout modeling and automatic offline generation of robot programs. Furthermore, A* based algorithms are used for generating collision-free trajectories, discretized both in the robot joints space and in the Cartesian space. The software evaluation was tested inside the VC simulation world and in the real-world scenario. Results have shown to be concise and accurate, with minor displacement inaccuracies due to differences between the virtual model and the real world.

2019

Converting Robot Offline Programs to Native Code Using the AdaptPack Studio Translators

Autores
Souza, JP; Castro, A; Rocha, L; Relvas, P; Silva, MF;

Publicação
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
The increase in productivity is a demand for modern industries that need to be competitive in the actual business scenario. To face these challenges, companies are increasingly using robotic systems for end-of-line production tasks, such as wrapping and palletizing, as a mean to enhance the production line efficiency and products traceability, allowing human operators to be moved to more added value operations. Despite this increasing use of robotic systems, these equipments still present some inconveniences regarding the programming procedure, as the time required for its execution does not meet the current industrial needs. To face this drawback, offline robot programming methods are gaining great visibility, as their flexibility and programming speed allows companies to face the need of successive changes in the production line set-up. However, even with a great number of robots and simulators that are available in market, the efforts to support several robot brands in one software did not reach the needs of engineers. Therefore, this paper proposes a translation library named AdaptPack Studio Translator, which is capable to export proprietary codes for the ABB, Fanuc, Kuka, and Yaskawa robot brands, after their offline programming has been performed in the Visual Components software. The results presented in this paper are evaluated in simulated and real scenarios.

  • 119
  • 330