Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2023

An Educational Kit for Simulated Robot Learning in ROS 2

Autores
Almeida, F; Leão, G; Sousa, A;

Publicação
Robot 2023: Sixth Iberian Robotics Conference - Advances in Robotics, Volume 2, Coimbra, Portugal, 22-24 November 2023.

Abstract
Robot Learning is one of the most important areas in Robotics and its relevance has only been increasing. The Robot Operating System (ROS) has been one of the most used architectures in Robotics but learning it is not a simple task. Additionally, ROS 1 is reaching its end-of-life and a lot of users are yet to make the transition to ROS 2. Reinforcement Learning (RL) and Robotics are rarely taught together, creating greater demand for tools to teach all these components. This paper aims to develop a learning kit that can be used to teach Robot Learning to students with different levels of expertise in Robotics. This kit works with the Flatland simulator using open-source free software, namely the OpenAI Gym and Stable-Baselines3 packages, and contains tutorials that introduce the user to the simulation environment as well as how to use RL to train the robot to perform different tasks. User tests were conducted to better understand how the kit performs, showing very positive feedback, with most participants agreeing that the kit provided a productive learning experience. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

2023

Mission Supervisor for Food Factories Robots

Autores
Moreira, T; Santos, FN; Santos, L; Sarmento, J; Terra, F; Sousa, A;

Publicação
Robot 2023: Sixth Iberian Robotics Conference - Advances in Robotics, Volume 2, Coimbra, Portugal, 22-24 November 2023.

Abstract
Climate change, limited natural resources, and the increase in the world’s population impose society to produce food more sustainably, with lower energy and water consumption. The use of robots in agriculture is one of the most promising solutions to change the paradigm of agricultural practices. Agricultural robots should be seen as a way to make jobs easier and lighter, and also a way for people who do not have agricultural skills to produce their food. The PixelCropRobot is a low-cost, open-source robot that can perform the processes of monitoring and watering plants in small gardens. This work proposes a mission supervisor for PixelCropRobot, and general agricultural robots, and presents a prototype of user interface to this mission supervision. The communication between the mission supervisor and the other components of the system is done using ROS2 and MQTT, and mission file standardized. The mission supervisor receives a prescription map, with information about the respective mission, and decomposes them into simple tasks. An A* algorithm then defines the priority of each mission that depends on factors like water requirements, and distance travelled. This concept of mission supervisor was deployed into the PixelCropRobot and was validated in real conditions, showing a enormous potential to be extended to other agricultural robots.

2023

Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers

Autores
Matos, D; Lima, J; Rohrich, R; Oliveira, A; Valente, A; Costa, P; Costa, P;

Publicação
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Simulators have been increasingly used on development and tests on several areas. They allow to speed up the development without damage and no extra costs. On realistic simulators, where kinematics play an important role, the modelling process should be imported for each component to be accurately simulated. Some robots are not yet modelled, as for example the Monera. This paper presents a model of a small vibration robot (Monera) that is acquired in a developed test-bed. A localisation ground truth is used to acquire the position of the Monera with actuating it. Linear and angular speeds acquired from real experiments allow to validate the proposed methodology.

2023

Hybrid Legged-Wheeled Robotic Platforms: Survey on Existing Solutions

Autores
Moreira, J; Soares, IN; Lima, J; Pinto, VH; Costa, P;

Publicação
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
This survey analyses and compares ten different robots capable of hybrid locomotion in an attempt to elucidate the readers on several aspects of importance when designing and implementing a legged-wheeled vehicle. With this purpose in mind, the robots are compared based on their goals, kinematic configurations, joint specifications and overall performance. In this text, their variety and versatility is presented, justifying their use in real-world scenarios.

2023

Position Estimator for a Follow Line Robot: Comparison of Least Squares and Machine Learning Approaches

Autores
Matos, D; Mendes, J; Lima, J; Pereira, AI; Valente, A; Soares, S; Costa, P; Costa, P;

Publicação
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Navigation is one of the most important tasks for a mobile robot and the localisation is one of its main requirements. There are several types of localisation solutions such as LiDAR, Radio-frequency and acoustic among others. The well-known line follower has been a solution used for a long time ago and still remains its application, especially in competitions for young researchers that should be captivated to the scientific and technological areas. This paper describes two methodologies to estimate the position of a robot placed on a gradient line and compares them. The Least Squares and the Machine Learning methods are used and the results applied to a real robot allow to validate the proposed approach.

2023

Robot at Factory 4.0: An Auto-Referee Proposal Based on Artificial Vision

Autores
Ferreira, T; Braun, J; Lima, J; Pinto, VH; Santos, M; Costa, P;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
The robotization and automation of tasks are relevant processes and of great relevance to be considered nowadays. This work aims to turn the manual action of assigning the score for the robotic competition Robot at Factory 4.0 by an automatic referee. Specifically, the aim is to represent the real space in a set of computational information using computer vision, localization and mapping techniques. One of the crucial processes to achieve this goal involved the adaptive calibration of the parameters of a digital camera through visual references and tracking of objects, which resulted in a fully functional, robust and dynamic system that is capable of mapping the competition's objects accurately and correctly performing the referee's tasks.

  • 13
  • 332