Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2019

Monitoring and Analyzing Mountain Glacier Surface Movement Using SAR Data and a Terrestrial Laser Scanner: A Case Study of the Himalayas North Slope Glacier Area

Autores
Fan, JH; Wang, Q; Liu, G; Zhang, L; Guo, ZC; Tong, LQ; Peng, JH; Yuan, WL; Zhou, W; Yan, J; Perski, Z; Sousa, JJ;

Publicação
REMOTE SENSING

Abstract
The offset tracking technique based on synthetic aperture radar (SAR) image intensity information can estimate glacier displacement even when glacier velocities are high and the time interval between images is long, allowing for the broad use of this technique in glacier velocity monitoring. Terrestrial laser scanners, a non-contact measuring system, can measure the velocity of a glacier even if there are no control points arranged on a glacier. In this study, six COSMO-SkyMed images acquired between 31 July and 22 December 2016 were used to obtain the glacial movements of five glaciers on the northern slope of the central Himalayas using the offset tracking approach. During the period of image acquirement, a terrestrial laser scanner was used, and point clouds of two periods in a small area at the terminus of the Pingcuoliesa Glacier were obtained. By selecting three fixed areas of the point clouds that have similar shapes across two periods, the displacements of the centers of gravity of the selected areas were calculated by using contrast analyses of feature points. Although the overall low-density point clouds data indicate that the glacial surfaces have low albedos relative to the wavelength of the terrestrial laser scanner and the effect of its application is therefore influenced in this research, the registration accuracy of 0.0023 m/d in the non-glacial areas of the scanner's measurements is acceptable, considering the magnitude of 0.072 m/d of the minimum glacial velocity measured by the scanner. The displacements from the point clouds broadly agree with the results of the offset tracking technique in the same area, which provides further evidence of the reliability of the measurements of the SAR data in addition to the analyses of the root mean squared error of the velocity residuals in non-glacial areas. The analysis of the movement of five glaciers in the study area revealed the dynamic behavior of these glacial surfaces across five periods. G089972E28213N Glacier, Pingcuoliesa Glacier and Shimo Glacier show increasing surface movement velocities from the terminus end to the upper part with elevations of 1500 m, 4500 m, and 6400 m, respectively. The maximum velocities on the glacial surface profiles were 31.69 cm/d, 62.40 cm/d, and 42.00 cm/d, respectively. In contrast, the maximum velocity of Shie Glacier, 50.60 cm/d, was observed at the glacier's terminus. For each period, G090138E28210N Glacier exhibited similar velocity values across the surface profile, with a maximum velocity of 39.70 cm/d. The maximum velocities of G089972E28213N Glacier, Pingcuoliesa Glacier, and Shie Glacier occur in the areas where the topography is steepest. In general, glacial surface velocities are higher in the summer than in the winter in this region. With the assistance of a terrestrial laser scanner with optimized wavelengths or other proper ground-based remote sensing instruments, the offset tracking technique based on high-resolution satellite SAR data should provide more reliable and detailed information for local and even single glacial surface displacement monitoring.

2019

3D Surface velocity retrieval of mountain glacier using an offset tracking technique applied to ascending and descending SAR constellation data: a case study of the Yiga Glacier

Autores
Wang, Q; Fan, JH; Zhou, W; Tong, LQ; Guo, ZC; Liu, G; Yuan, WL; Sousa, JJ; Perski, Z;

Publicação
INTERNATIONAL JOURNAL OF DIGITAL EARTH

Abstract
COSMO-SkyMed is a constellation of four X-band high-resolution radar satellites with a minimum revisit period of 12 hours. These satellites can obtain ascending and descending synthetic aperture radar (SAR) images with very similar periods for use in the three-dimensional (3D) inversion of glacier velocities. In this paper, based on ascending and descending COSMO-SkyMed data acquired at nearly the same time, the surface velocity of the Yiga Glacier, located in the Jiali County, Tibet, China, is estimated in four directions using an offset tracking technique during the periods of 16 January to 3 February 2017 and 1 February to 19 February 2017. Through the geometrical relationships between the measurements and the SAR images, the least square method is used to retrieve the 3D components of the glacier surface velocity in the eastward, northward and upward directions. The results show that applying the offset tracking technique to COSMO-SkyMed images can be used to derive the true 3D velocity of a glacier's surface. During the two periods, the Yiga Glacier had a stable velocity, and the maximum surface velocity, 2.4 m/d, was observed in the middle portion of the glacier, which corresponds to the location of the steepest slope.

2019

Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage

Autores
Adao, T; Padua, L; Marques, P; Sousa, JJ; Peres, E; Magalhaes, L;

Publicação
COMPUTERS

Abstract
Virtual models' production is of high pertinence in research and business fields such as architecture, archeology, or video games, whose requirements might range between expeditious virtual building generation for extensively populating computer-based synthesized environments and hypothesis testing through digital reconstructions. There are some known approaches to achieve the production/reconstruction of virtual models, namely digital settlements and buildings. Manual modeling requires highly-skilled manpower and a considerable amount of time to achieve the desired digital contents, in a process composed by many stages that are typically repeated over time. Both image-based and range scanning approaches are more suitable for digital preservation of well-conserved structures. However, they usually require trained human resources to prepare field operations and manipulate expensive equipment (e.g., 3D scanners) and advanced software tools (e.g., photogrammetric applications). To tackle the issues presented by previous approaches, a class of cost-effective, efficient, and scarce-data-tolerant techniques/methods, known as procedural modeling, has been developed aiming at the semi- or fully-automatic production of virtual environments composed of hollow buildings exclusively represented by outer facades or traversable buildings with interiors, either for expeditious generation or reconstruction. Despite the many achievements of the existing procedural modeling approaches, the production of virtual buildings with both interiors and exteriors composed by non-rectangular shapes (convex or concave n-gons) at the floor-plan level is still seldomly addressed. Therefore, a methodology (and respective system) capable of semi-automatically producing ontology-based traversable buildings composed of arbitrarily-shaped floor-plans has been proposed and continuously developed, and is under analysis in this paper, along with its contributions towards the accomplishment of other virtual reality (VR) and augmented reality (AR) projects/works oriented to digital applications for cultural heritage. Recent roof production-related enhancements resorting to the well-established straight skeleton approach are also addressed, as well as forthcoming challenges. The aim is to consolidate this procedural modeling methodology as a valuable computer graphics work and discuss its future directions.

2019

Evaluation of machine learning techniques in vine leaves disease detection: A preliminary case study on flavescence dorée

Autores
Hruška, J; Adão, T; Pádua, L; Guimarães, N; Peres, E; Morais, R; Sousa, JJ;

Publicação
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives

Abstract
Vine culture is influenced by many factors, such as the weather, soil or topography, which are triggers to phytosanitary issues. Among them are some diseases, that are responsible for major economic losses that can, however, be managed with timely interventions in the field, viable of leading to effective results by preventing damage propagation. While not all symptoms might present a visible evidence, hyperspectral sensors can tackle this aspect with their ability for measuring hundreds of continuously sparse bands that range beyond the eye-perceptible spectrum. Having such research line in mind in this work, a hyperspectral sensor was applied to analyse the spectral status of vine leaves samples, collected in three chronologically distinct campaigns, while costly and destructive laboratory methods were used to track Flavescence Dorée (FD) in the same samples, for a ground truth information. Regarding data processing, machine learning approaches were used, in which several classifiers were selected to detect FD in vine leaves hyperspectral images. The goal was to evaluate and find most suitable classifier for this task. © 2019 International Society for Photogrammetry and Remote Sensing.

2019

MixAR: A Multi-Tracking Mixed Reality System to Visualize Virtual Ancient Buildings Aligned Upon Ruins

Autores
Adao, T; Padua, L; Narciso, D; Sousa, JJ; Agrellos, L; Peres, E; Magalhaes, L;

Publicação
JOURNAL OF INFORMATION TECHNOLOGY RESEARCH

Abstract
MixAR, a full-stack system capable of providing visualization of virtual reconstructions seamlessly integrated in the real scene (e.g. upon ruins), with the possibility of being freely explored by visitors, in situ, is presented in this article. In addition to its ability to operate with several tracking approaches to be able to deal with a wide variety of environmental conditions, MixAR system also implements an extended environment feature that provides visitors with an insight on surrounding points-of-interest for visitation during mixed reality experiences (positional rough tracking). A procedural modelling tool mainstreams augmentation models production. Tests carried out with participants to ascertain comfort, satisfaction and presence/immersion based on an in-field MR experience and respective results are also presented. Ease to adapt to the experience, desire to see the system in museums and a raised curiosity and motivation contributed as positive points for evaluation. In what regards to sickness and comfort, the lowest number of complaints seems to be satisfactory. Models' illumination/re-lightning must be addressed in the future to improve the user's engagement with the experiences provided by the MixAR system.

2019

Landslide movement monitoring with ALOS-2 SAR data

Autores
Liu, G; Guo, HD; Perski, Z; Fan, JH; Sousa, JJ; Yan, SY; Tang, PP;

Publicação
THIRD INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION

Abstract
Landslide is a hazard that threaten the people who lives in the mountain area, it comes active especially rainy seasons and causes a large number of casualties every year. The movement of the slope is an indicator of activity of the landslide, it is helpful to capture the precursor of the activity, the monitoring of the movement of the slope is very important. However it is a difficult problem due to complex topography, cloudy and rainy weather for optical sensors, In this paper we will show the capability of up-to-date Advanced Land Observing Satellite-2 (ALOS-2) Synthetic Aperture Radar (SAR) data in monitoring the movement of the landslide which located in south China, which can capture the fast and slow movement with different spatial and temporal baseline combination, the results shows that the L-band SAR data has its advantage in monitoring the movement of the landslides especially in the low latitude, cloudy and rainy area.

  • 132
  • 330