Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por PHT

2021

Optical Vernier Effect: Recent Advances and Developments

Autores
Gomes, AD; Bartelt, H; Frazao, O;

Publicação
LASER & PHOTONICS REVIEWS

Abstract
The optical analog of the Vernier effect applied to fiber interferometers is a recent tool to enhance the sensitivity and resolution of optical fiber sensors. This effect relies on the overlap between the signals of two interferometers with slightly detuned interference frequencies. The Vernier envelope modulation generated at the output spectrum presents magnified sensing capabilities (i.e., magnified wavelength shift) compared to that of the individual sensing interferometers that constitute the system, leading to a new generation of highly sensitive fiber sensing devices. This review analyses the recent advances and developments of the optical Vernier effect from a fiber sensing point-of-view. Initially, the fundamentals of the effect are introduced, followed by an extensive review on the state-of-the-art, presenting all the different configurations and types of fiber sensing interferometers used to introduce the optical Vernier effect. This paper also includes an overview of the complex case of enhanced Vernier effect and the introduction of harmonics to the effect.

2021

Optical Sensors for Industry 4.0

Autores
Santos, JL;

Publicação
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS

Abstract
This work addresses the role of optical sensing within the new emerging paradigm Industry 4.0. It starts with some thoughts about complex systems and their inherent need of enlarged sensorial tools. Then, the principles of optical sensing are presented with identification of the two principal types. After summarizing what is meant by Industry 4.0, it is detailed how optical sensing can contribute to the raise up of this new industrial concept, focusing on vision, physical sensing, chemical sensing, and sensor multiplexing. Emphasis is given in fiber optic sensing and, when feasible, in fiber Bragg grating sensing technology. Finally, some final remarks are delivered.

2021

Point-of-care Vis-SWNIR spectroscopy towards reagent-less hemogram analysis

Autores
Barroso, TG; Ribeiro, L; Gregorio, H; Santos, F; Martins, RC;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
Current chemometrics and artificial intelligence methods are unable to deal with complex multi-scale interference of blood constituents in visible shortwave near-infrared spectroscopy point-of-care technologies. The major difficulty is to access the rich information in the spectroscopy signal, unscrambling and interpreting spectral interference to provide analytical quality quantifications. We present a new self-learning artificial intelligence method for spectral processing based on the search of covariance modes with direct correspondence to the BeerLambert law. Dog and cat hemograms were analyzed by impedance flow cytometry and standard laboratory methods (erythrocytes counts, hemoglobin, and hematocrit). Spectral records were performed for the same samples. The methodology was benchmarked against state-of-the-art chemometrics: a multivariate linear model of hemoglobin bands, similarity, partial least squares, local partial least squares, and artificial neural networks. The new method outperforms the state-of-the-art, providing analytical quality quantifications according to desired veterinary pathology guidelines (total errors of 1.69% to 7.14%), whereas chemometric methods cannot. The method finds relevant samples and spectral information that hold the quantitative information for a particular interference mode, in contrast to the current methods that do not hold a relationship with the BeerLambert law. It allows the interpretation of interference bands used in quantification, providing the capacity to determine if the composition of an unknown sample is predictable. This research is especially relevant for improving current optical point-of-care technologies that are affected by spectral interference and moving towards micro-sampling and reagent-less technologies in healthcare and veterinary medicine diagnosis.

2021

Multiparameter Sensor Based on a Multi-Interferometric Serial Configuration for Temperature and Strain Measurements

Autores
Perez-Herrera R.A.; Bravo M.; Leandro D.; Novais S.; Pradas J.; Lopez-Amo M.;

Publicação
IEEE Journal of Selected Topics in Quantum Electronics

Abstract
In this work, a multi-parameter point sensor based on the combination of Fabry-Perot (FP) and the anti-resonant (AR) reflecting guidance in cascade configuration is proposed and experimentally demonstrated. This structure, based on FP interference and AR reflecting guidance, was fabricated with two different air micro-cavities. The attained experimental results showed different strain and temperature sensitivities for the antiresonance contribution. However, when analyzing the FP interference, only strain sensitivity was observed, demonstrating that this air micro-cavity was also insensitive to temperature variations.

2021

Loss mechanisms in femtosecond laser written optical waveguides

Autores
Marques, PVS; Amorim, VA; Maia, JM; Viveiros, D;

Publicação
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
Low loss optical waveguides are the key component for the fabrication of more complex integrated optics devices. In most works related to femtosecond laser written waveguides, the values presented give results at a single wavelength or in a narrow wavelength band; but some applications in optical sensing, for example, would benefit from waveguides having good propagation properties in a larger wavelength range. This paper presents results that allow one to gain insight into the major loss mechanisms present in laser written waveguides in two different types of glasses (fused silica and Eagle 2000 glass) and the dependence of those on the fabrication parameters. Finally, an example of application of broadband operating waveguides is given.

2021

Nano-Displacement Measurement Using an Optical Drop-Shaped Structure

Autores
Robalinho, P; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
This letter presents a new optical fiber structure with the capability of measuring nano-displacement. This device is composed by a cleaved fiber and a drop-shaped microstructure that is connected to the fiber cladding. This optical structure is responsible for the light beam division and the formation of new optical paths. The operation mode consists of the Vernier effect that allows achieving higher sensitivity than the currently sensors. During the experimental execution, displacement sensitivities of 1.05 +/- 0.01 nm , 15.1 +/- 0.1 nm, 24.7 +/- 0.3 nm and 28.3 +/- 0.3 nm , were achieved for the carrier, the fundamental of the envelope, the first harmonic and the second harmonic, respectively. The M-factor of 27 was attained, allowing a minimum resolution of 0.7 nm. In addition to displacement sensing, the proposed optical sensor can be used as a cantilever enabling non-evasive measurements.

  • 14
  • 75