2007
Autores
Keko, H; Jaramillo Duque, A; Miranda, V;
Publicação
2007 International Conference on Intelligent Systems Applications to Power Systems, ISAP
Abstract
Evolutionary Particle Swarm Optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from Particle Swarm Optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.
1998
Autores
Miranda, V;
Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS
Abstract
This paper shows the conceptual differences between adopting a probabilistic weighting of the futures and a risk averse strategy, in power system planning under uncertain scenarios. It is illustrated with a distribution planning problem, where optimal solutions in both cases are determined by a Genetic Algorithm. It shows that the probabilistic approach is less safe and cannot detect some interesting solutions.
2005
Autores
Castro, ARG; Miranda, V;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
An artificial neural network concept has been developed for transformer fault diagnosis using dissolved gas-in-oil analysis (DGA). A new methodology for mapping the neural network into a rule-based inference system is described. This mapping makes explicit the knowledge implicitly captured by the neural network during the learning stage, by transforming it into a Fuzzy Inference System. Some studies are reported, illustrating the good results obtained.
2007
Autores
Keko, H; Duque, AJ; Miranda, V;
Publicação
ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS
Abstract
Evolutionary Particle Swarm Optimization (EPSO) is a robust optimization algorithm belonging to evolutionary methods. EPSO borrows the movement rules from Particle Swarm Optimization (PSO) and uses it as a recombination operator that evolves under selection. This paper presents a reactive power planning approach taking advantage of EPSO robustness, in a model that considers simultaneously multiple contingencies and multiple load levels. Results for selected problems are summarized including a trade-off analysis of results.
2002
Autores
Miranda, V; Fonseca, N;
Publicação
CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2
Abstract
This paper presents a new meta-heuristic (EPSO) built putting together the best features of Evolution Strategies (ES) and Particle Swarm Optimization (PSO). Examples of the superiority of EPSO over classical PSO are reported. The paper also describes the application of EPSO to real world problems, including an application in Opto-electronics and another in Power Systems.
2005
Autores
Miranda, V; Oo, NW;
Publicação
15th Power Systems Computation Conference, PSCC 2005
Abstract
This paper provides evidence that Evolutionary Particle Swarm Algorithms outperform Genetic Algorithms in deriving optimal strategic decisions for an Energy Retailer, in the framework of a complex simulation of a multiple energy market, based on an Intelligent Agent FIPA-compliant open source platform.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.