2024
Autores
Matos, C; Castro, M; Baptista, J; Valente, A; Briga-Sá, A;
Publicação
SCIENCE OF THE TOTAL ENVIRONMENT
Abstract
Water is essential at various stages of winemaking, from irrigation in the vineyard to cleaning equipment and facilities, controlling fermentation temperatures, and diluting grape juice if necessary. Additionally, water is used for sanitation purposes to ensure the quality and safety of the final product. This article provides an overview of the existing knowledge regarding the use of water in wineries throughout the winemaking process, water consumption values, effluent treatment, efficient use of water measures, and water reuse. Different assessment methods, including Water Footprint (WF) and Life Cycle Assessment(LCA), provide varied insights into water use impacts, emphasizing the importance of standardized methodologies for accurate assessment and sustainable practices. This research showed that the characterization of the vinification processes of each type of wine is fundamental for further analysis on the environmental impact of winemaking regarding water use. It was also observed that WF is affected by factors like climate, irrigation needs, and cleaning procedures. Thus, efficient water management in all the stages of wine production is crucial to reduce the overall WF. Water efficiency measures may involve the modification of the production processes, reusing and recycling water and the implementation of cleaner production practices and technological innovations, such as automated fermentation systems that reduce water needs. Furthermore, waste management in wineries emphasizes the importance of sustainable practices and technological innovations to mitigate environmental impacts and enhance resource efficiency.
2024
Autores
Mota, A; Serôdio, C; Valente, A;
Publicação
ELECTRONICS
Abstract
Smart home devices are becoming more popular over the years. A diverse range of appliances is being created, and Ambient Intelligence is growing in homes. However, there are various producers of these gadgets, different kinds of protocols, and diverse environments. The lack of interoperability reduces comfort of the user and turns into a barrier to smart home adoption. Matter is growing by constructing an open-source application layer protocol that can be compatible with all smart home ecosystems. In this article, a Matter overview is provided (namely, of the Commissioning stage), and a Matter Accessory using ESP32-S3 is developed referring to the manufacturer's SDKs and is inserted into an existent household ecosystem. Its behavior on the network is briefly analyzed, and interactions with the device are carried out. The simplicity of these tasks demonstrates accessibility for developers to create products, especially when it comes to firmware. Additionally, device commissioning and control are straightforward for the consumer. This capacity of gadget incorporation into diverse ecosystems using Matter is already on the market and might result in higher device production and enhanced smart home adoption.
2024
Autores
Neves, BP; Valente, A; Santos, VDN;
Publicação
Eng
Abstract
2024
Autores
Berger, GS; Bonzatto, L Jr; Pinto, MF; Júnior, AO; Mendes, J; da Silva, YMR; Pereira, AI; Valente, A; Lima, J;
Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as valuable tools in precision agriculture due to their ability to provide timely and detailed information over large agricultural areas. In this sense, this work aims to evaluate the semi-autonomous navigation capacity of a multirotor UAV when applied in the field of precision agriculture. For this, a small aircraft is used to identify and track a set of fiducial markers (Ar Track Alvar) in an environment that simulates inspections of insect traps in olive groves. The purpose of this marker is to provide a visual reference point for the drone's navigation system. Once the Ar Track Alvar marker is detected, the robot will receive navigation information based on the marker's position to approach the specific trap. The experimental setup evaluated the computer vision algorithm applied to the UAV to make it recognize the Ar Track Alvar marker and then reach the trap efficiently. Experimental tests were conducted in a indoor and outdoor environment using DJI Tello. The results demonstrated the feasibility of applying these fiducial markers as a solution for the UAV's navigation in this proposed scenario.
2024
Autores
Abreu, R; Simão, E; Serôdio, C; Branco, F; Valente, A;
Publicação
AI
Abstract
2024
Autores
Barradas, R; Lencastre, JA; Soares, SP; Valente, A;
Publicação
ROBOTICS
Abstract
The present article explores the impact of educational robotics on fostering computational thinking and problem-solving skills in elementary school students through a problem-based learning approach. This study involved the creation of a framework which includes a robot and two eBooks designed for students and teachers. The eBooks serve as a guide to the construction and programming of a small Arduino-based robot. Through integration with gamification elements, the model features a narrative with three characters to boost a student's engagement and motivation. Through iteration of heuristic evaluations and practical tests, we refined the initial theoretical framework. An empirical study was conducted in two phases involving 350 students. The first empirical test involved a small group of 21 students, similar to end users, from five European schools. With a 100% completion rate for the tasks, 73.47% of these tasks were solved optimally. Later, we conducted a larger validation study which involved 329 students in a Portuguese school. This second phase of the study was conducted during the 2022-2023 and 2023-2024 school years with three study groups. The results led to a 91.13% success rate in problem-solving activities, and 56.99% of those students achieved optimal solutions. Advanced statistical techniques, including ANOVA, were applied to account for group differences and ensure the robustness of the findings. This study demonstrates that the proposed model which integrates educational robotics with problem-based learning effectively promotes computational thinking and problem-solving skills, which are essential for the 21st century. These findings support the inclusion of robotics into primary school curricula and provide a validated framework for educators.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.