Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por PHT

2020

Embedded Fiber Sensors to Monitor Temperature and Strain of Polymeric Parts Fabricated by Additive Manufacturing and Reinforced with NiTi Wires

Autores
Nascimento, M; Inacio, P; Paixao, T; Camacho, E; Novais, S; Santos, TG; Braz Fernandes, FMB; Pinto, JL;

Publicação
SENSORS

Abstract
This paper focuses on three main issues regarding Material Extrusion (MEX) Additive Manufacturing (AM) of thermoplastic composites reinforced by pre-functionalized continuous Nickel-Titanium (NiTi) wires: (i) Evaluation of the effect of the MEX process on the properties of the pre-functionalized NiTi, (ii) evaluation of the mechanical and thermal behavior of the composite material during usage, (iii) the inspection of the parts by Non-Destructive Testing (NDT). For this purpose, an optical fiber sensing network, based on fiber Bragg grating and a cascaded optical fiber sensor, was successfully embedded during the 3D printing of a polylactic acid (PLA) matrix reinforced by NiTi wires. Thermal and mechanical perturbations were successfully registered as a consequence of thermal and mechanical stimuli. During a heating/cooling cycle, a maximum contraction of approximate to 100 mu m was detected by the cascaded sensor in the PLA material at the end of the heating step (induced by Joule effect) of NiTi wires and a thermal perturbation associated with the structural transformation of austenite to R-phase was observed during the natural cooling step, near 33.0 degrees C. Regarding tensile cycling tests, higher increases in temperature arose when the applied force ranged between 0.7 and 1.1 kN, reaching a maximum temperature variation of 9.5 +/- 0.1 degrees C. During the unload step, a slope change in the temperature behavior was detected, which is associated with the material transformation of the NiTi wire (martensite to austenite). The embedded optical sensing methodology presented here proved to be an effective and precise tool to identify structural transformations regarding the specific application as a Non-Destructive Testing for AM.

2020

Lipofuscin-Type Pigment as a Marker of Colorectal Cancer

Autores
Carvalho, S; Carneiro, I; Henrique, R; Tuchin, V; Oliveira, L;

Publicação
ELECTRONICS

Abstract
The study of the optical properties of biological tissues for a wide spectral range is necessary for the development and planning of noninvasive optical methods to be used in clinical practice. In this study, we propose a new method to calculate almost all optical properties of tissues as a function of wavelength directly from spectral measurements. Using this method, and with the exception of the reduced scattering coefficient, which was obtained by traditional simulation methods, all the other optical properties were calculated in a simple and fast manner for human and pathological colorectal tissues. The obtained results are in good agreement with previous published data, both in magnitude and in wavelength dependence. Since this method is based on spectral measurements and not on discrete-wavelength experimental data, the calculated optical properties contain spectral signatures that correspond to major tissue chromophores such as DNA and hemoglobin. Analysis of the absorption bands of hemoglobin in the wavelength dependence of the absorption spectra of normal and pathological colorectal mucosa allowed to identify differentiated accumulation of a pigment in these tissues. The increased content of this pigment in the pathological mucosa may be used for the future development of noninvasive diagnostic methods for colorectal cancer detection.

2020

Measurement of optical properties of normal and pathological human liver tissue from deep-UV to NIR

Autores
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, VV;

Publicação
TISSUE OPTICS AND PHOTONICS

Abstract
The interest of using light in clinical practice is increasing strongly and many applications work at various wavelengths from the ultraviolet to the infrared. Due to this great range of applications, the determination of the optical properties of biological tissues in a wide spectral range becomes of interest. The liver is an important organ, since it has a major role in the human body and various pathologies are known to develop within it. For these reasons, this study concerns the estimation of the optical properties of human normal and pathological (metastatic carcinoma) liver tissues between 200 and 1000 nm. The obtained optical properties present the expected wavelength dependencies for both tissues - the refractive index, the absorption and the scattering coefficients decrease with the wavelength and the anisotropy and light penetration depth increase with the wavelength. Although similar behavior was observed for the various properties between the normal and pathological tissues, evidence of smaller blood content in the pathological tissues was found. A possible explanation is that the cancer cells destroy liver's vasculature and internal architecture, providing though a reduction in the blood content. For low wavelengths, it was observed a matching between the scattering and the reduced scattering coefficients, which implies a nearly zero anisotropy in that range. The scattering coefficient decreases from nearly 140 cm(-1) (at 200 nm) to 80 cm(-1) (at 1000 nm) for the normal liver and from nearly 140 cm(-1) (at 200 nm) to 95 cm(-1) (at 1000 nm) for the pathological tissue.

2020

Improved biomedical imaging over a wide spectral range from UV to THz towards multimodality

Autores
Oliveira, LM; Zaytsev, K; Tuchin, VV;

Publicação
BIOPHOTONICS-RIGA 2020

Abstract
The concept of 'tissue optical windows' and method of optical clearing (OC) based on controllable and reversible modification of tissue optical properties by their soaking with a biocompatible optical clearing agent (OCA) are prsented. Fundamentals and major mechanisms of OC allowing one to enhance optical imaging facilities and laser treatment efficiency of living tissues are described. Perspectives of immersion optical clearing/contrasting technique aiming to enhance optical imaging of living tissues by using different imaging modalities working in the ultra-broad wavelength range from deep UV to terahertz waves are discussed. It demonstrated that immersion OC method can be applied to evaluate the characteristic diffusion properties of water and OCA in various tissues and even discriminate between the mobile water content in normal and pathological tissues.

2020

UV-NIR efficiency of the refractive index matching mechanism on colorectal muscle during treatment with different glycerol osmolarities

Autores
Gomes, N; Tuchin, VV; Oliveira, LM;

Publicação
Journal of Biomedical Photonics & Engineering

Abstract

2020

Optical fiber probes for trapping and backscattered signal analysis of sub-mm particles

Autores
Rodrigues, SM; Paiva, JS; Silva, FM; Coelho, L; Marques, PVS; Cunha, JPS; Jorge, PAS;

Publicação
Optics InfoBase Conference Papers

Abstract
Optical tweezers based on metallic-coated tapered optical fibers with an aperture at the apex are fabricated and their sensing ability is tested. Preliminary results show robustness in differentiating between a trapped and no trapped state. © 2021 The Author(s).

  • 19
  • 75