Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2016

Design of Posicast PID control systems using a gravitational search algorithm (vol 167, pg 18, 2015)

Autores
De Moura Oliveira, PBD; Pires, EJS; Novais, P;

Publicação
NEUROCOMPUTING

Abstract

2016

Scenario generation for electric vehicles' uncertain behavior in a smart city environment

Autores
Soares, J; Borges, N; Ghazvini, MAF; Vale, Z; de Moura Oliveira, PBD;

Publicação
ENERGY

Abstract
This paper presents a framework and methods to estimate electric vehicles' possible states, regarding their demand, location and grid connection periods. The proposed methods use the Monte Carlo simulation to estimate the probability of occurrence for each state and a fuzzy logic probabilistic approach to characterize the uncertainty of electric vehicles' demand. Day-ahead and hour-ahead methodologies are proposed to support the smart grids' operational decisions. A numerical example is presented using an electric vehicles fleet in a smart city environment to obtain each electric vehicle possible states regarding their grid location.

2016

A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads

Autores
Soares, J; Fotouhi Ghazvini, AF; Vale, Z; de Moura Oliveira, PBD;

Publicação
APPLIED ENERGY

Abstract
In this paper, a multi-objective framework is proposed for the daily operation of a Smart Grid (SG) with high penetration of sensitive loads. The Virtual Power Player (VPP) manages the day-ahead energy resource scheduling in the smart grid, considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G), while maintaining a highly reliable power for the sensitive loads. This work considers high penetration of sensitive loads, i.e. loads such as some industrial processes that require high power quality, high reliability and few interruptions. The weighted-sum approach is used with the distributed and parallel computing techniques to efficiently solve the multi-objective problem. A two-stage optimization method is proposed using a Particle Swarm Optimization (PSO) and a deterministic technique based on Mixed-Integer Linear Programming (MILP). A realistic mathematical formulation considering the electric network constraints for the day-ahead scheduling model is described. The execution time of the large-scale problem can be reduced by using a parallel and distributed computing platform. A Pareto front algorithm is applied to determine the set of non-dominated solutions. The maximization of the minimum available reserve is incorporated in the mathematical formulation in addition to the cost minimization, to take into account the reliability requirements of sensitive and vulnerable loads. A case study with a 180-bus distribution network and a fleet of 1000 gridable Electric Vehicles (EVs) is used to illustrate the performance of the proposed method. The execution time to solve the optimization problem is reduced by using distributed computing.

2016

Morse Code Translator Using the Arduino Platform: Crafting the Future of Microcontrollers

Autores
Silva, S; Valente, A; Soares, S; Reis, MJCS; Paiva, J; Bartolomeu, P;

Publicação
Proceedings of the 2016 SAI Computing Conference (SAI)

Abstract
The ability of the Arduino platform to enhance student interest and performance in science, technology, engineering, and mathematics (STEM) courses, while fostering skills that are important prerequisites for future IT careers, has been proven more than once in the past years. But can the future be crafted without the past? We believe that many past inventions crave the future, so their understanding is a bridge of knowledge that must be passed to students. According to Grand View Research website the microcontroller market will rise from the 20 billion units in 2015 to an amazing 39 billion units in 2020. Therefore, an increase on IT careers is also expected. The Morse code and the telegraph revolutionized long-distance communication in the past and laid the groundwork for the communications revolution. In fact, although developed in the 1830s and 1840s by Samuel Morse (1791-1872) and other inventors, only in 1844 the first telegraph message, from Washington, D.C., to Baltimore, Maryland, was sent. To provide the means to students to start learning this technology we have developed four experiences that introduce them to the fundamentals of communications, including the Li-Fi technology. This new technology is based on the Morse code, and can spark again the communications revolution by using tiny, imperceptible flickering lights can provide a new way of sending data to computers and mobile devices. Therefore, we decided to revitalize the almost forgotten Morse code by implementing it with an Arduino in order to lay again the foundations to this new revolution that is coming. This paper presents the implementation model of two Morse code translators, how they work, their implementation, and some results. We also present a VLC (Visible Light Communication) system based on the same principles of the Morse code building this way the foundation for students to proceed with this course of the investigation.

2016

MEMS Devices in Agriculture

Autores
Valente, A;

Publicação
Advanced Mechatronics and MEMS Devices II - Microsystems and Nanosystems

Abstract

2016

Controller System Design Using the Coefficient Diagram Method

Autores
Coelho, JP; Pinho, TM; Boaventura Cunha, J;

Publicação
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING

Abstract
Coefficient diagram method is a controller design technique for linear time-invariant systems. This design procedure occurs into two different domains: an algebraic and a graphical. The former is closely paired to a conventional pole placement method and the latter consists on a diagram whose reading from the plotted curves leads to insights regarding closed-loop control system time response, stability and robustness. The controller structure has two degrees of freedom and the design process leads to both low overshoot closed-loop time response and good robustness performance regarding mismatches between the real system and the design model. This article presents an overview on this design method. In order to make more transparent the presented theoretical concepts, examples in Matlab (R) code are provided. The included code illustrates both the algebraic and the graphical nature of the coefficient diagram design method.

  • 194
  • 331