Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Vladimiro Miranda

2008

Promotion of new wind farms based on a decision support system

Autores
Ramirez Rosado, IJ; Garcia Garridoa, E; Fernandez Jimenez, LA; Zorzano Santamaria, PJ; Monteiro, C; Miranda, V;

Publicação
RENEWABLE ENERGY

Abstract
The integration in electric power networks of new renewable energy facilities is the final result of a complex planning process. One of the important objectives of this process is the selection of suitable geographical locations where such facilities can be built. This selection procedure can be a difficult task because of the initially opposing positions of the different agents involved in this procedure, such as, for example, investors, utilities, governmental agencies or social groups. The conflicting interest of the agents can delay or block the construction of new facilities. This paper presents a new decision support system, based on Geographic Information Systems, designed to overcome the problems posed by the agents and thus achieve a consensual selection of locations and overcome the problems deriving from their preliminary differing preferences. This paper presents the description of the decision support system, as well as the results obtained for two groups of agents useful for the selection of locations for the construction of new wind farms in La Rioja (Spain).

1992

FUZZY MODELING OF POWER-SYSTEM OPTIMAL LOAD FLOW

Autores
MIRANDA, V; SARAIVA, JT;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
In this paper, a fuzzy model for power system operation is presented. Uncertainties in loads and generations are modelled as fuzzy numbers. System behavior under known (while uncertain) injections is dealt with by a DC fuzzy power flow model. System optimal (while uncertain) operation is calculated with linear programming procedures where the problem nature and structure allows some efficient techniques such as Dantzig Wolfe decomposition and dual simplex to be used. Among the results, one obtains a fuzzy cost value for system operation and possibility distributions for branch power flows and power generations. Some risk analysis is possible, as system robustness and exposure indices can be derived and hedging policies can be investigated.

1994

IMPACT ON SOME PLANNING DECISIONS FROM A FUZZY MODELING OF POWER-SYSTEMS

Autores
SARAIVA, JT; MIRANDA, V; PINTO, LMVG;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
In this paper, system component reinforcements are analyzed from the perspective of their impact in increasing flexibility in system design. The proposed framework integrates a fuzzy optimal power flow model through which one can derive, as a function of load uncertainties, possibility distributions for generation, power flows and power not supplied. Exposure and robustness indices, based on risk analysis concepts, are defined. These indices can be used to rank the expansion alternatives, giving the planner insight to system behavior in face of adverse futures. Their use in conjunction with investment assessments is proposed as a necessary step in a decision making methodology.

1994

GENETIC ALGORITHMS IN OPTIMAL MULTISTAGE DISTRIBUTION NETWORK PLANNING

Autores
MIRANDA, V; RANITO, JV; PROENCA, LM;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
This paper describes a genetic algorithm approach to the optimal multistage planning of distribution networks. The authors describe a mathematical and algorithmic model that they have developed and experimented with success. The paper also presents application examples, with real size systems. The advantages of adopting this new approach are discussed in the planning context, namely in conjunction with the adoption of multicriteria decision making methods.

1995

REAL-TIME PREVENTIVE ACTIONS FOR TRANSIENT STABILITY ENHANCEMENT WITH A HYBRID NEURAL-NETWORK - OPTIMIZATION APPROACH

Autores
MIRANDA, V; FIDALGO, JN; LOPES, JAP; ALMEIDA, LB;

Publicação
IEEE TRANSACTIONS ON POWER SYSTEMS

Abstract
This paper reports a new approach in defining preventive control measures to assure transient stability relatively to one or several contingencies that may occur separately in a power system. Generation dispatch is driven not only by economic functions but also with the derivatives of the transient energy margin value; these derivatives are obtained directly from a trained Artificial Neural Network (ANN), using ri:al time monitorable system values. Results obtained from computer simulations, for several contingencies in the CIGRE test system, confirm the validity of the developed approach.

2011

A multi-objective evaluation of the impact of the penetration of Distributed Generation

Autores
MacIel, RS; Padilha Feltrin, A; Da Rosa, MA; Miranda, V;

Publicação
IEEE PES Innovative Smart Grid Technologies Conference Europe

Abstract
This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.

  • 22
  • 36