2024
Autores
Castro Martins, P; Marques, A; Coelho, L; Vaz, M; Baptista, JS;
Publicação
HELIYON
Abstract
Introduction: Loss of cutaneous protective sensation and high plantar pressures increase the risk for diabetic foot patients. Trauma and ulceration are imminent threats, making assessment and monitoring essential. This systematic review aims to identify systems and technologies for measuring in -shoe plantar pressures, focusing on the at -risk diabetic foot population. Methods: A systematic search was conducted across four electronic databases (Scopus, Web of Science, PubMed, Oxford Journals) using PRISMA methodology, covering articles published in English from 1979 to 2024. Only studies addressing systems or sensors exclusively measuring plantar pressures inside the shoe were included. Results: A total of 87 studies using commercially available devices and 45 articles proposing new systems or sensors were reviewed. The prevailing market offerings consist mainly of instrumented insoles. Emerging technologies under development often feature configurations with four, six or eight resistive sensors strategically placed within removable insoles. Despite some variability due to the inherent heterogeneity of human gait, these devices assess plantar pressure, although they present significant differences between them in measurement results. Individuals with diabetic foot conditions appears exhibit elevated plantar pressures, with reported peak pressures reaching approximately 1000 kPa. The results also showed significant differences between the diabetic and non -diabetic groups. Conclusion: Instrumented insoles, particularly those incorporating resistive sensor technology, dominate the field. Systems employing eight sensors at critical locations represent a pragmatic approach, although market options extend to systems with up to 960 sensors. Differences between devices can be a critical factor in measurement and highlights the importance of individualized patient assessment using consistent measurement devices.
2024
Autores
Castro-Martins P.; Pinto-Coelho L.;
Publicação
Lecture Notes in Mechanical Engineering
Abstract
Diabetic foot is a complication that carries a considerable risk in diabetic patients. The consequent loss of protective sensitivity in the lower limbs requires an early diagnosis due to the imminent possibility of ulceration or amputation of the affected limb. To assess the loss of protective sensitivity, the 10 gf Semmes-Weinstein (SW) monofilament is the most used first-line procedure. However, the used device is most often non-calibrated and its feedback can lead to decision errors. In this paper we present an equipment that is able to automatically conduct a metrological verification and evaluation of the 10 gf SW monofilament in the assessment of the loss of protective sensitivity. Additionally, the proposed equipment is able to simulate the practicioner’s procedure, or can be used for training purposes, providing force-feedback information. After calibration, displacement vs. buckling force contours were plotted for three distinct monofilaments, confirming then ability of the equipment to provide fast, detailed and precise information.
2024
Autores
Castro-Martins, P; Pinto-Coelho, L; Campilho, RDSG;
Publicação
BIOENGINEERING-BASEL
Abstract
Diabetic foot is a serious complication that poses significant risks for diabetic patients. The resulting reduction in protective sensitivity in the plantar region requires early detection to prevent ulceration and ultimately amputation. The primary method employed for evaluating this sensitivity loss is the 10 gf Semmes-Weinstein monofilament test, commonly used as a first-line procedure. However, the lack of calibration in existing devices often introduces decision errors due to unreliable feedback. In this article, the mechanical behavior of a monofilament was analytically modeled, seeking to promote awareness of the impact of different factors on clinical decisions. Furthermore, a new device for the automation of the metrological evaluation of the monofilament is described. Specific testing methodologies, used for the proposed equipment, are also described, creating a solid base for the establishment of future calibration guidelines. The obtained results showed that the tested monofilaments had a very high error compared to the 10 gf declared by the manufacturers. To improve the precision and reliability of assessing the sensitivity loss, the frequent metrological calibration of the monofilament is crucial. The integration of automated verification, simulation capabilities, and precise measurements shows great promise for diabetic patients, reducing the likelihood of adverse outcomes.
2023
Autores
Marques, MN; Magalhaes, SA; Dos Santos, FN; Mendonca, HS;
Publicação
ROBOTICS
Abstract
In recent years, there has been a remarkable surge in the development and research of tethered aerial systems, thus reflecting a growing interest in their diverse applications. Long-term missions involving aerial vehicles present significant challenges due to the limitations of current battery solutions. Tethered vehicles can circumvent such restrictions by receiving their power from an element on the ground such as a ground station or a mobile terrestrial platform. Tethered Unmanned Aerial Vehicles (UAVs) can also be applied to load transportation achieved by a single or multiple UAVs. This paper presents a comprehensive systematic literature review, with a special focus on solutions published in the last five years (2017-2022). It emphasizes the key characteristics that are capable of grouping publications by application scope, propulsion method, energy transfer solution, perception sensors, and control techniques adopted. The search was performed in six different databases, thereby resulting in 1172 unique publications, from which 182 were considered for inclusion in the data extraction phase of this review. Among the various aircraft types, multirotors emerged as the most widely used category. We also identified significant variations in the application scope of tethered UAVs, thus leading to tailored approaches for each use case, such as the fixed-wing model being predominant in the wind generation application and the lighter-than-air aircraft in the meteorology field. Notably, the classical Proportional-Integral-Derivative (PID) control scheme emerged as the predominant control methodology across the surveyed publications. Regarding energy transfer techniques, most publications did not explicitly describe their approach. However, among those that did, high-voltage DC energy transfer emerged as the preferred solution. In summary, this systematic literature review provides valuable insights into the current state of tethered aerial systems, thereby showcasing their potential as a robust and sustainable alternative to address the challenges associated with long-duration aerial missions and load transportation.
2023
Autores
Leao, G; Sousa, A; Dinis, D; Veiga, G;
Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
The manipulation of deformable objects poses a significant challenge for the automotive industry. In particular, the assembly of flexible cables and wire-harnesses in vehicles is still performed manually as there is yet to be a reliable and general solution for this problem. This paper presents a simple yet efficient motion planning algorithm to mount a flexible wire in an assembly jig, where the wire must traverse a set of forks in order. The algorithm uses a heuristic based on a set of control points to guide the wire's movement. Various controlled assembly scenarios are built in simulation using MuJoCo, a physics engine that can emulate the dynamics of Deformable Linear Objects (DLO). Experimental results in simulation demonstrated that the amount and orientation of the forks has a large impact in the solution's performance and highlighted several key ideas and challenges moving forward. Thus, this work serves as a stepping stone towards the development of more complete solutions, capable of assembling flexible items in vehicles.
2023
Autores
Gomes, B; Torres, J; Sobral, P; Sousa, A; Reis, LP;
Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
In recent years, scientific and technological advances in robotics, have enabled the development of disruptive solutions for human interaction with the real world. In particular, the application of robotics to support people with physical disabilities, improved their life quality with a high social impact. This paper presents a stereo image based perception solution for autonomous wheelchairs navigation. It was developed to extend the Intellwheels project, a development platform for intelligent wheelchairs. The current version of Intellwheels relies on a planar scanning sensor, the Laser Range Finder (LRF), to detect the surrounding obstacles. The need for robust navigation capabilities means that the robot is required to precept not only obstacles but also bumps and holes on the ground. The proposed stereo-based solution, supported in passive stereo ZED cameras, was evaluated in a 3D simulated world scenario designed with a challenging floor. The performance of the wheelchair navigation with three different configurations was compared: first, using a LRF sensor, next with an unfiltered stereo camera and finally, applying a stereo camera with a speckle filter. The LRF solution was unable to complete the planned navigation. The unfiltered stereo camera completed the challenge with a low navigation quality due to noise. The filtered stereo camera reached the target position with a nearly optimal path.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.