Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por PHT

2019

Multiplexing optical fiber Fabry-Perot interferometers based on air-microcavities

Autores
Perez Herrera, RA; Novais, S; Bravo, M; Leandro, D; Silva, SF; Frazao, O; Lopez Amo, M;

Publicação
SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019)

Abstract
In this work we demonstrate the multiplexing capability of new optical fiber Fabry-Perot interferometers based on air-microcavities using a commercial FBG interrogator. Three optimized air-microcavity interferometer sensors have been multiplexed in a single network and have been monitored using the commercial FBGs interrogator in combination with FFT calculations. Results show a sensitivity of 2.18 pi rad/m epsilon and a crosstalk-free operation.

2018

Skeletal muscle dispersion (400-1000 nm) and kinetics at optical clearing

Autores
Oliveira, LM; Carvalho, MI; Nogueira, EM; Tuchin, VV;

Publicação
JOURNAL OF BIOPHOTONICS

Abstract
Skeletal muscle dispersion and optical clearing (OC) kinetics were studied experimentally to prove the existence of the refractive index (RI) matching mechanism of OC. Sample thickness and collimated transmittance spectra were measured during treatments with glucose (40%) and ethylene glycol (EG; 99%) solutions and used to obtain the time dependence of the RI of tissue fluids based on the proposed theoretical model. Calculated results demonstrated an increase of RI of tissue fluids and consequently proved the occurrence of the RI matching mechanism. The RI increase was observed for the wavelength range between 400 and 1000 nm and for the 2 probing molecules explored. We found that for 30 min treatment with 40% glucose and 99% EG, RI of sarcoplasm plus interstitial fluid was increased at 800 nm from 1.328 to 1.348 and from 1.328 to 1.369, respectively.

2018

Development of a new system for real-time detection of radon using scintillating optical fibers

Autores
Monteiro, CS; Coelho, L; Barbosa, SM; Guimarães, D;

Publicação
Optics InfoBase Conference Papers

Abstract
A remote sensor for radon continuous measurement using polymeric scintillation optical fibers was developed and evaluated. Successful preliminary results showed detection of natural occurring radon from a container with rocks rich in uranium oxides. © OSA 2018 © 2018 The Author(s)

2018

Measurement thermal conductivity of water using a all-fiber sensor based on a metallic coated hybrid LPG-FBG structure

Autores
Silva, GE; Caldas, P; Santos, JL; Santos, JC;

Publicação
Optics InfoBase Conference Papers

Abstract
This paper presents preliminary results of common water thermal conductivity measurements using an all-fiber sensor based in conventional hot-wire method concept. The thermal conductivity of common water at room temperature obtained is 0.699 W/mK. Although the result is relatively distinct, about 14%, from the reference value found in literature, it is promising and indicates the feasibility of using the experimental arrangement for measuring thermal properties of materials with higher accuracy, provided that improvements already foreseen in future work be incorporated. © OSA 2018 © 2018 The Author(s)

2018

Towards a Single Parameter Sensing for Bacteria Sorting through Optical Fiber Trapping and Back-Scattered Signal Analysis

Autores
Paiva, JS; Ribeiro, RSR; Jorge, PAS; Rosa, CC; Cunha, JPS;

Publicação
26th International Conference on Optical Fiber Sensors

Abstract

2018

Improved fabrication of polymeric optical fiber tweezers for single cell detection

Autores
Rodrigues, SM; Paiva, JS; Ribeiro, RSR; Soppera, O; Jorge, PAS;

Publicação
Optics InfoBase Conference Papers

Abstract
A new fabrication method of polymeric optical fiber tweezers with a multi-mode tip is presented. Preliminary results show higher robustness, improved ability for 2D trapping and differentiation of particles based on back-scattering analysis. © OSA 2018 © 2018 The Author(s)

  • 30
  • 75