Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por PHT

2017

Monolithic Add-Drop Multiplexers in Fused Silica Fabricated by Femtosecond Laser Direct Writing

Autores
Amorim, VA; Maia, JM; Alexandre, D; Marques, PVS;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
The fabrication of optical add-drop multiplexers in fused silica is demonstrated, for the first time to our knowledge, using the femtosecond laser direct writing technique. To achieve this, a Mach-Zehnder interferometer configuration was used for the signal routing by the implementation of 3-dB directional couplers, along with Bragg grating waveguides for wavelength selectivity. The fabrication of all individual devices required was optimized. The behavior of the fabricated add-drop multiplexer was characterized at around 1550 nm, where a 3-dB bandwidth of 0.19 +/- 0.01 nm was obtained along with an intrachannel and adjacent interchannel crosstalk of -30 and -20 dB at Delta lambda = +/- 0.75 nm, respectively. This study shows that such complex devices can be manufactured by femtosecond laser direct writing, with future improvements being discussed.

2017

Multimode interference-based fiber sensor in a cavity ring-down system for refractive index measurement

Autores
Silva, S; Frazao, O;

Publicação
OPTICS AND LASER TECHNOLOGY

Abstract
This work reports a multimode interference-based fiber sensor in a cavity ring-down system (CRD) for sensing temperature-induced refractive index (RI) changes of water. The sensing head is based in multimodal interference (MMI) and it is placed inside the fiber loop cavity of the CRD system. A modulated laser source was used to send pulses down into the fiber loop cavity and an erbium-doped fiber amplifier (EDFA) was placed in the fiber ring to provide an observable signal with a reasonable decay time. The behavior of the sensing head to temperature was studied due to its intrinsic sensitivity to said parameter - a sensitivity of -1.6x10(-9) mu s/degrees C was attained. This allowed eliminating the temperature component from RI measurement of water and a linear sensitivity of 580 mu s/RIU in the RI range of 1.324-1.331 was obtained. The use of a MMI fiber sensor in the proposed CRD configuration allowed achieving a sensitivity similar to 4-fold than that obtained with a tilted fiber Bragg grating and similar to 2-fold than that when a micrometric channel inscribed in the fiber was used.

2017

Real-Time Optical Monitoring of Etching Reaction of Microfluidic Channel Fabricated by Femtosecond Laser Direct Writing

Autores
Maia, JM; Amorim, VA; Alexandre, D; Marques, PVS;

Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY

Abstract
Femtosecond laser direct writing is a three dimensional fabrication technique that can be applied to produce integrated optical components with high spatial resolution or microfluidic channels when combined with HF etching. The same fabrication technique can thus be employed to produce monolithic optofluidic devices for sensing applications. One of the most common sensing schemes involves evanescent optical interaction; therefore, the channel must meet some requirements regarding surface roughness, which will depend on the laser writing conditions, as described in this paper. However, of more significance is the distance between waveguiding medium and microfluidic channel that must be accurately defined. This control can be achieved by monitoring the etching reaction of a waveguide grating written a few microns from the channel, as introduced in this paper. In addition to its function as an etching monitor, the grating can also be used as a coarse refractive index sensor device.

2017

Simple multimodal optical technique for evaluation of free/bound water and dispersion of human liver tissue

Autores
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, VV;

Publicação
JOURNAL OF BIOMEDICAL OPTICS

Abstract
The optical dispersion and water content of human liver were experimentally studied to estimate the optical dispersions of tissue scatterers and dry matter. Using temporal measurements of collimated transmittance [T-c(t)] of liver samples under treatment at different glycerol concentrations, free water and diffusion coefficient (D-gl) of glycerol in liver were found as 60.0% and 8.2 x 10(-7) cm(2)/s, respectively. Bound water was calculated as the difference between the reported total water of 74.5% and found free water. The optical dispersion of liver was calculated from the measurements of refractive index (Rl) of tissue samples made for different wavelengths between 400 and 1000 nm. Using liver and water optical dispersions at 20 degrees C and the free and total water, the dispersions for liver scatterers and dry matter were calculated. The estimated dispersions present a decreasing behavior with wavelength. The dry matter dispersion shows higher Rl values than liver scatterers, as expected. Considering 600 nm, dry matter has an Rl of 1.508, whereas scatterers have an Rl of 1.444. These dispersions are useful to characterize the Rl matching mechanism in optical clearing treatments, provided that [T-c(t)] and thickness measurements are performed during treatment. The knowledge of D-gl is also important for living tissue cryoprotection applications. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

2017

Study of corrosion using long period fiber gratings coated with iron exposed to salty water

Autores
Coelho, L; Santos, JL; Jorge, PAS; de Almeida, JMM;

Publicação
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)

Abstract
A study of long period fiber gratings (LPFG) over coated with iron (Fe) and subjected to oxidation in water with different sodium chloride (NaCl) concentrations is presented. The formation of iron oxides and hydroxides was monitored in real time by following the features of the LPFG attenuation band. Preliminary results show that Fe coated LPFGs can be used as sensors for early warning of corrosion in offshore and in coastal projects where metal structures made of iron alloys are in contact with sea or brackish water.

2017

Vibration and Magnetic Field Sensing Using a Long-Period Grating

Autores
Nascimento, IM; Chesini, G; Baptista, JM; Cordeiro, CMB; Jorge, PAS;

Publicação
IEEE SENSORS JOURNAL

Abstract
A long-period grating (LPG) written on a standard single mode fiber is investigated as a fiber optic sensor for vibration and magnetic field sensing. It is demonstrated the high sensitivity of the device to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using intensity-based interrogation scheme, providing a frequency discrimination of 913 mHz. The goal of these tests was to evaluate the sensor as a passive vibration monitor in the detection of changes in resonant vibration frequencies of support infrastructures can provide information on its degradation. Furthermore, taking advantage of the intrinsic sensitivity to micro strain, alternating magnetic fields were also measured using an intensity-based interrogation scheme by coupling a Terfenol-D magnetostrictive rod to a pre-strained LPG sensor, providing a resolution below 5.61 mu T-rms/root Hz from 1.22 mT(rms) up to 2.53 mT(rms).

  • 39
  • 75