Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2021

Modeling of an elastic joint: An experimental setup approach

Autores
Pinto, VH; Lima, J; Gonçalves, J; Costa, P;

Publicação
Lecture Notes in Electrical Engineering

Abstract
Throughout this paper it is presented a novel elastic joint configuration, being compared with other similar joints found in recent literature. It is presented its modeling, being its estimation process developed offline, based on a proposed experimental setup. This setup enables to monitor and collect data from an absolute encoder and a load cell. Some data obtained from these sensors is then graphically represented, like angle and torque, obtaining some parameters. Finally, through an optimization process, where the error of the angle is minimized, the remaining parameters of the joint are estimated, thus obtaining a realistic model of the system. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

Design, Modeling, and Control of a Single Leg for a Legged-Wheeled Locomotion System with Non-Rigid Joint

Autores
Pinto, VH; Goncalves, J; Costa, P;

Publicação
ACTUATORS

Abstract
This article presents an innovative legged-wheeled system, designed to be applied in a hybrid robotic vehicle's locomotion system, as its driving member. The proposed system will be capable to combine the advantages of legged and wheeled locomotion systems, having 3DOF connected through a combination of both rigid and non-rigid joints. This configuration provides the vehicle the ability to absorb impacts and selected external disturbances. A state space approach was adopted to control the joints, increasing the system's stability and adaptability. Throughout this article, the entire design process of this robotic system will be presented, as well as its modeling and control. The proposed system's design is biologically inspired, having as reference the human leg, resulting in the development of a prototype. The results of the testing process with the proposed prototype are also presented. This system was designed to be modular, low-cost, and to increase the autonomy of typical autonomous legged-wheeled locomotion systems.

2021

Model of a dc motor with worm gearbox

Autores
Pinto, VH; Gonçalves, J; Costa, P;

Publicação
Lecture Notes in Electrical Engineering

Abstract
In this paper, the modeling of a system based on a DC Motor with Worm Gearbox is presented. Worm gearboxes are typically applied when its compactness is an important factor, as well as an orthogonal redirectioning is required. One of the greatest advantages of worm gears is its unique self-locking characteristic. This means that the gear can only rotate by its input side, and cannot be actuated through the load side. Using a DC motor with a worm gearbox is a solution that guarantees that, for instance, in a robotic manipulator, when the arm’s joint reaches a desired angle, it does not move until a next required setpoint. Modeling accurately this system is crucial in order to develop its control in a more efficient way. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

State Estimation of Over-Sensored Systems Applied to a Low-Cost Robotic Manipulator

Autores
Moreira, J; Pinto, VH; Goncalves, J; Costa, P;

Publicação
APPLIED SCIENCES-BASEL

Abstract
There is an increasing demand for robotic manipulators to perform more complex and versatile tasks. In order to fulfill this need, expeditious calibration and estimation techniques are required as a first step for the correct usage of the manipulator. This article aims at finding a subset of these algorithms that could be used in a generic manipulator and should allow for its prompt use. Two models for the representation of the pose of the manipulator are described and used in the state estimation problem. The results of the implementation are tested, and some performance metrics are obtained.

2021

Micromouse 3D simulator with dynamics capability: a Unity environment approach

Autores
Zawadniak, PVF; Piardi, L; Brito, T; Lima, J; Costa, P; Monteiro, ALR; Costa, P; Pereira, AI;

Publicação
SN APPLIED SCIENCES

Abstract
The micromouse competition has been gaining prominence in the robotic atmosphere, due to the challenging and multidisciplinary characteristics provided by the teams' duels, being a gateway for those who intend to deepen their studies in autonomous robotics. In this context, this paper presents a realistic micromouse simulator developed with Unity software, a widely game engine with dynamics and 3D development platform used. The developed simulator has hardware-in-the-loop capabilities, aims to be simple to use, it can be customizable, and designed to be as similar as possible to the real robot configurations. In this way, the proposed simulator requires few modifications to port the microcontroller code to a real robot. Therefore, the framework presented in this work allows the user to simulate the development of new algorithm strategies dedicated to competition and also hardware updates. The simulation supports several mazes, from previous competitions and has the possibility to add different mazes elaborated by the user. Thus, the features and functionality of the simulator can serve to accelerate the project's development of the beginning and advanced competitors, using real models to reduce the gap between the mouse robot behavior in the simulation and the reality. The developed simulation environment is available to the community.

2021

Multi AGV Coordination Tolerant to Communication Failures

Autores
Matos, D; Costa, P; Lima, J; Costa, P;

Publicação
ROBOTICS

Abstract
Most path planning algorithms used presently in multi-robot systems are based on offline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real time, rather than planning in advance, by using a temporal estimation of the robot's positions at any given time. In this article, the implementation of a control system for multi-robot applications that operate in environments where communication faults can occur and where entire sections of the environment may not have any connection to the communication network will be presented. This system uses the TEA* to plan multiple robot paths and a supervision system to control communications. The supervision system supervises the communication with the robots and checks whether the robot's movements are synchronized. The implemented system allowed the creation and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA* algorithm. Using the Simtwo2020 simulation software, capable of simulating movement dynamics and the Lazarus development environment, it was possible to simulate the execution of several different missions by the implemented system and analyze their results.

  • 59
  • 330