Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2024

MonoVisual3DFilter: 3D tomatoes' localisation with monocular cameras using histogram filters

Autores
Magalhaes, SAC; dos Santos, FN; Moreira, AP; Dias, JMM;

Publicação
ROBOTICA

Abstract
Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects' spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: How can we use and control monocular sensors to perceive objects' position in the 3D task space? Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.

2024

UAV Visual and Thermographic Power Line Detection Using Deep Learning

Autores
Santos, T; Cunha, T; Dias, A; Moreira, AP; Almeida, J;

Publicação
SENSORS

Abstract
Inspecting and maintaining power lines is essential for ensuring the safety, reliability, and efficiency of electrical infrastructure. This process involves regular assessment to identify hazards such as damaged wires, corrosion, or vegetation encroachment, followed by timely maintenance to prevent accidents and power outages. By conducting routine inspections and maintenance, utilities can comply with regulations, enhance operational efficiency, and extend the lifespan of power lines and equipment. Unmanned Aerial Vehicles (UAVs) can play a relevant role in this process by increasing efficiency through rapid coverage of large areas and access to difficult-to-reach locations, enhanced safety by minimizing risks to personnel in hazardous environments, and cost-effectiveness compared to traditional methods. UAVs equipped with sensors such as visual and thermographic cameras enable the accurate collection of high-resolution data, facilitating early detection of defects and other potential issues. To ensure the safety of the autonomous inspection process, UAVs must be capable of performing onboard processing, particularly for detection of power lines and obstacles. In this paper, we address the development of a deep learning approach with YOLOv8 for power line detection based on visual and thermographic images. The developed solution was validated with a UAV during a power line inspection mission, obtaining mAP@0.5 results of over 90.5% on visible images and over 96.9% on thermographic images.

2024

Positioning Cyber-Physical Systems and Digital Twins in Industry 4.0

Autores
Pires, F; Melo, V; Queiroz, J; Moreira, AP; de la Prieta, F; Estévez, E; Leitao, P;

Publicação
2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024

Abstract
Industry 4.0 has brought innovative concepts and technologies that have greatly improved the development of more intelligent, flexible and reconfigurable systems. Two of these concepts, Cyber-Physical Systems (CPSs) and Digital Twins (DTs), have gained significant attention from various stakeholders, e.g., researchers, industry practitioners, and governmental organizations. Both are vital to support the digitalisation of products, machines, and systems, and they focus on the integration of physical and cyber processes, where one affects the other through feedback loops. Having this in mind, this paper aims to better understand how CPS and DT are correlated, particularly exploring their similarities and differences, their positioning within the Industry 4.0 paradigm, and their convergence to develop Industry 4.0 solutions. Some research challenges to develop Industry 4.0 solutions by integrating these concepts are also discussed.

2024

BVE + EKF: A viewpoint estimator for the estimation of the object's position in the 3D task space using Extended Kalman Filters

Autores
Magalhães, SC; Moreira, AP; dos Santos, FN; Dias, J;

Publicação
CoRR

Abstract

2024

Comparison of Pallet Detection and Location Using COTS Sensors and AI Based Applications

Autores
Caldana, D; Carvalho, R; Rebelo, PM; Silva, MF; Costa, P; Sobreira, H; Cruz, N;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Autonomous Mobile Robots (AMR) are seeing an increased introduction in distinct areas of daily life. Recently, their use has expanded to intralogistics, where forklift type AMR are applied in many situations handling pallets and loading/unloading them into trucks. One of the these vehicles requirements, is that they are able to correctly identify the location and status of pallets, so that the forklifts AMR can insert the forks in the right place. Recently, some commercial sensors have appeared in the market for this purpose. Given these considerations, this paper presents a comparison of the performance of two different approaches for pallet detection: using a commercial off-the-shelf (COTS) sensor and a custom developed application based on Artificial Intelligence algorithms applied to an RGB-D camera, where both the RGB and depth data are used to estimate the position of the pallet pockets.

2024

Hybrid Localization Solution for Autonomous Mobile Robots in Complex Environments

Autores
Rebelo, PM; Valente, A; Oliveira, PM; Sobreira, H; Costa, P;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Mobile robot platforms capable of operating safely and accurately in dynamic environments can have a multitude of applications, ranging from simple delivery tasks to advanced assembly operations. These abilities rely heavily on a robust navigation stack, which requires stable and accurate pose estimations within the environment. The wide range of AMR's applications and the characteristics of multiple industrial environments (indoor and outdoor) have led to the development of a flexible and robust robot software architecture that allows the fusion of different data sensors in real time. In this way, and in terms of localization, AMRs have greater precision when it comes to uncontrolled and unstructured environments. These complex environments feature a variety of dynamic and unpredictable elements, such as variable layouts, limited visibility, unstructured spaces, and uncertain terrain. This paper presents a multi-localization system for industrial mobile robots in complex and dynamic industrial scenarios, based on different localization technologies and methods that can interact together and simultaneously.

  • 6
  • 345