Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2021

A Simulation Tool for Optimizing a 3D Spray Painting System

Autores
Casanova J.; Lima J.; Costa P.;

Publicação
Communications in Computer and Information Science

Abstract
The lack of general robotics purposed, accurate open source simulators is a major setback that limits the optimized trajectory generation research and general evolution of the robotics field. Spray painting is a particular case that has multiple advantages in using a simulator for exploring new algorithms, mainly the waste of materials and the dangers associated with a robotic manipulator. This paper demonstrates an implementation of spray painting on a previously existing simulator, SimTwo. Several metrics for optimization that evaluate the painted result are also proposed. In order to validate the implementation, we conducted a real world experiment that serves both as proof that the chosen spray distribution model translates to reality and as a way to calibrate the model parameters.

2021

Sensor Fusion for Mobile Robot Localization Using Extended Kalman Filter, UWB ToF and ArUco Markers

Autores
Faria S.; Lima J.; Costa P.;

Publicação
Communications in Computer and Information Science

Abstract
The ability to locate a robot is one of the main features to be truly autonomous. Different methodologies can be used to determine robots location as accurately as possible, however these methodologies present several problems in some circumstances. One of these problems is the existence of uncertainty in the sensing of the robot. To solve this problem, it is necessary to combine the uncertain information correctly. In this way, it is possible to have a system that allows a more robust localization of the robot, more tolerant to failures and disturbances. This paper evaluates an Extended Kalman Filter (EKF) that fuses odometry information with Ultra-WideBand Time-of-Flight (UWB ToF) measurements and camera measurements from the detection of ArUco markers in the environment. The proposed system is validated in a real environment with a differential robot developed for this purpose, and the achieved results are promising.

2021

Prototyping of a low-cost stroboscope to be applied in condition maintenance: An open hardware and software approach

Autores
Brancalião, L; Camargo, C; Gonçalves, J; Lima, J;

Publicação
Lecture Notes in Electrical Engineering

Abstract
This paper aims to develop a low-cost stroboscope, which consists of an optical equipment capable of generating flashes of light at different frequencies, allowing to measure the rotation velocity of machines and contributing to maintenance processes in the industry. This device is based on the stroboscopic effect, a visual event that occurs when a continuous movement is presented by a series of samples, generated by flashes of light. When the frequency of the rotation movement is the same frequency of light pulses, the process will appear stationary. Based on the high cost of the commercial stroboscopes, it was developed a stroboscope prototype based on the Arduino platform, LED technology and 3D printing with an open hardware and software. The final prototype went through calibration and validation processes, achieving a performance very similar to a commercial instrument. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.

2021

Optimum Sensors Allocation for a Forest Fires Monitoring System

Autores
Azevedo, BF; Brito, T; Lima, J; Pereira, AI;

Publicação
FORESTS

Abstract
Every year forest fires destroy millions of hectares of land worldwide. Detecting forest fire ignition in the early stages is fundamental to avoid forest fires catastrophes. In this approach, Wireless Sensor Network is explored to develop a monitoring system to send alert to authorities when a fire ignition is detected. The study of sensors allocation is essential in this type of monitoring system since its performance is directly related to the position of the sensors, which also defines the coverage region. In this paper, a mathematical model is proposed to solve the sensor allocation problem. This model considers the sensor coverage limitation, the distance, and the forest density interference in the sensor reach. A Genetic Algorithm is implemented to solve the optimisation model and minimise the forest fire hazard. The results obtained are promising since the algorithm could allocate the sensor avoiding overlaps and minimising the total fire hazard value for both regions considered.

2021

Battery Management System For Mobile Robots based on an Extended Kalman Filter Approch

Autores
Chellal, AA; Lima, J; Goncalves, J; Megna, H;

Publicação
2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED)

Abstract
Robots are rapidly developing, due to the technology advances and the increased need for their mobility. Mobile Robots can move freely in unconstrained environments, without any external help. They are supplied by batteries as the only source of energy that they could access. Thus, the management of the energy offered by these batteries is so crucial and has to be done properly. Most advanced Battery Management System (BMS) algorithms reported in literature are developed and verified with laboratory-based experiments. The acquired data is then processed either online or offline, using PC-based software. This work consists of developing an on-Chip Extended Kalman Filter based BMS, which can be directly linked in a robot without having to be connected with an external device to process the data. The proposed system is implemented in a low-cost 8 bit microcontroller and results allow to validate the proposed approach.

2021

Industrial Robotic Arm in Machining Process Aimed to 3D Objects Reconstruction

Autores
Silva, MZ; Brito, T; Lima, JL; Silva, MF;

Publicação
2021 22ND IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT)

Abstract
Industrial robots are a technology which is highly present in industry and can perform several tasks, namely machining activities. Different than CNC machines, which work with G-code and have available several software applications to generate the machine code, there is a lack of software for robotic arms, in addition to each application depending on its own language and software. This work studied a way to use different robotic arms for 3D part machining processes, to perform 3D objects reconstruction obtained through a low-cost 3D scanner. Dealing with the 3D reconstruction by integrating 3D acquisition and robotic milling with software available on the market, this paper presents a system that acquires and reconstructs a 3D object, in order to seek greater flexibility with lower initial investments and checking the applicability of robot arm in these tasks. For this, a 3D object is scanned and imported to a CAD/CAM software, to generate the machining toolpath, and a software application is used to convert the G-code into robot code. Several experiments were performed, using an ABB IRB 2600 robot arm, and the results of the machining process allowed to validate the G-code conversion and milling process using robotic arms, according to the proposed methodology.

  • 62
  • 330