Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2021

Cost-Effective 4DoF Manipulator for General Applications

Autores
Magalhães, SA; Moreira, AP; dos Santos, FN; Dias, J; Santos, L;

Publicação
Intelligent Systems and Applications - Proceedings of the 2021 Intelligent Systems Conference, IntelliSys 2021, Amsterdam, The Netherlands, 2-3 September, 2021, Volume 3

Abstract
Nowadays, robotic manipulators’ uses are broader than industrial needs. They are applied to perform agricultural tasks, consumer services, medical surgeries, among others. The development of new cost-effective robotic arms assumes a prominent position to enable their wide-spread adoption in these application areas. Bearing these ideas in mind, the objective of this paper is twofold. First, introduce the hardware and software architecture and position-control design for a four Degree of Freedom (DoF) manipulator constituted by high-resolution stepper motors and incremental encoders and a cost-effective price. Secondly, to describe the mitigation strategies adopted to lead with the manipulator’s position using incremental encoders during startup and operating modes. The described solution has a maximum circular workspace of 0.7 m and a maximum payload of 3 kg. The developed architecture was tested, inducing the manipulator to perform a square path. Tests prove an accumulative error of 12.4 mm. All the developed code for firmware and ROS drivers was made publicly available. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2021

Digital Twin based What-if Simulation for Energy Management

Autores
Pires, F; Ahmad, B; Moreira, AP; Leitão, P;

Publicação
4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2021, Victoria, BC, Canada, May 10-12, 2021

Abstract

2021

Accuracy and Repeatability Tests on HoloLens 2 and HTC Vive

Autores
Soares, I; Sousa, RB; Petry, M; Moreira, AP;

Publicação
MULTIMODAL TECHNOLOGIES AND INTERACTION

Abstract
Augmented and virtual reality have been experiencing rapid growth in recent years, but there is still no deep knowledge regarding their capabilities and in what fields they could be explored. In that sense, this paper presents a study on the accuracy and repeatability of Microsoft's HoloLens 2 (augmented reality device) and HTC Vive (virtual reality device) using an OptiTrack system as ground truth. For the HoloLens 2, the method used was hand tracking, whereas, in HTC Vive, the object tracked was the system's hand controller. A series of tests in different scenarios and situations were performed to explore what could influence the measures. The HTC Vive obtained results in the millimeter range, while the HoloLens 2 revealed not very accurate measurements (around 2 cm). Although the difference can seem to be considerable, the fact that HoloLens 2 was tracking the user's hand and not the system's controller made a huge impact. The results are considered a significant step for the ongoing project of developing a human-robot interface by demonstrating an industrial robot using extended reality, which shows great potential to succeed based on our data.

2021

Smarter Robotic Sprayer System for Precision Agriculture

Autores
Baltazar, AR; dos Santos, FN; Moreira, AP; Valente, A; Cunha, JB;

Publicação
ELECTRONICS

Abstract
The automation of agricultural processes is expected to positively impact the environment by reducing waste and increasing food security, maximising resource use. Precision spraying is a method used to reduce the losses during pesticides application, reducing chemical residues in the soil. In this work, we developed a smart and novel electric sprayer that can be assembled on a robot. The sprayer has a crop perception system that calculates the leaf density based on a support vector machine (SVM) classifier using image histograms (local binary pattern (LBP), vegetation index, average, and hue). This density can then be used as a reference value to feed a controller that determines the air flow, the water rate, and the water density of the sprayer. This perception system was developed and tested with a created dataset available to the scientific community and represents a significant contribution. The results of the leaf density classifier show an accuracy score that varies between 80% and 85%. The conducted tests prove that the solution has the potential to increase the spraying accuracy and precision.

2021

Programming Robots by Demonstration Using Augmented Reality

Autores
Soares, I; Petry, M; Moreira, AP;

Publicação
SENSORS

Abstract
The world is living the fourth industrial revolution, marked by the increasing intelligence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex or too expensive to be fully automated, it would be more efficient if the machines were able to work with the human, not only by sharing the same workspace but also as useful collaborators. A possible solution to that problem is on human-robot interaction systems, understanding the applications where they can be helpful to implement and what are the challenges they face. This work proposes the development of an industrial prototype of a human-machine interaction system through Augmented Reality, in which the objective is to enable an industrial operator without any programming experience to program a robot. The system itself is divided into two different parts: the tracking system, which records the operator's hand movement, and the translator system, which writes the program to be sent to the robot that will execute the task. To demonstrate the concept, the user drew geometric figures, and the robot was able to replicate the operator's path recorded.

2021

Recommendation System using Reinforcement Learning for What-If Simulation in Digital Twin

Autores
Pires, F; Ahmad, B; Moreira, AP; Leitão, P;

Publicação
19th IEEE International Conference on Industrial Informatics, INDIN 2021, Palma de Mallorca, Spain, July 21-23, 2021

Abstract
The research about the digital twin concept is growing worldwide, especially in the industrial sector, due to the increasing digitisation level associated to Industry 4.0. The application of the digital twin concept improves performance of a system by implementing monitoring, diagnosis, optimisation, and decision support actions. In particular, the decision-making process is very time consuming since the decision-maker is presented with hundreds of different scenarios that can be simulated and assessed in a what-if perspective. Bearing this in mind, this paper proposes to integrate a digital twin-based what-if simulation with a recommendation system to improve the decision-making cycle. The recommendation system is based on a reinforcement learning technique and takes user knowledge of the system into consideration and trust in the system recommendation. The applicability of the proposed approach is presented in an assembly line case study for recommending the best configurations for the system operation, in terms of the optimal number of AGVs (Autonomous Guided Vehicles) in various scenarios. The achieved results show its successful application and highlight the benefits of using AI-based recommendation systems for what-if simulation in digital twin systems. © 2021 IEEE.

  • 68
  • 330