Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CRIIS

2021

Force control heuristics for surpassing pose uncertainty in mobile robotic assembly platforms

Autores
Moutinho, D; Rebelo, P; Costa, C; Rocha, L; Veiga, G;

Publicação
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
This paper presents a collaborative mobile manipulator assembly station, which uses force control to surpass the positional uncertainties arising from unstructured work environments and positional errors of the mobile platform. For this purpose, the use case of an internal combustion engine for the automotive industry was considered. Several force control heuristics relying on blind searches using oscillations and/or environment exploration were developed and implemented. Particular attention was given to the orientation errors of the mobile platform, as it was proved that they have a significant impact on the assembly task. The proposed heuristics showed great potential for the use case at hand. Particularly, when the orientation error of the platform is limited to +/- 2 degrees, the oscillation method complemented by environment exploration was able to surpass a maximum translation error of 32.3mm, whereas the environment exploration complemented by orientation correction was able to surpass an error of 73.3mm. Moreover, a generalization strategy was proposed, intending to expand the scope of the developed heuristics to other assembly applications.

2021

On the development of a collaborative robotic system for industrial coating cells

Autores
Arrais, R; Costa, CM; Ribeiro, P; Rocha, LF; Silva, M; Veiga, G;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
For remaining competitive in the current industrial manufacturing markets, coating companies need to implement flexible production systems for dealing with mass customization and mass production workflows. The introduction of robotic manipulators capable of mimicking with accuracy the motions executed by highly skilled technicians is an important factor in enabling coating companies to cope with high customization. However, there are some limitations associated with the usage of a fully automated system for coating applications, especially when considering customized products of large dimensions and complex geometry. This paper addresses the development of a collaborative coating cell to increase the flexibility and efficiency of coating processes. The robot trajectory is taught with an intuitive programming by demonstration system, in which an icosahedron marker with multicoloured LEDs is attached to the coating tool for tracking its trajectories using a stereoscopic vision system. For avoiding the construction of fixtures and allowing the operator to freely place products within the coating work cell, a modular 3D perception system was developed, relying on principal component analysis for performing the initial point cloud alignment and on the iterative closest point algorithm for 6 DoF pose estimation. Furthermore, to enable safe and intuitive human-robot collaboration, a non-intrusive zone monitoring safety system was employed to track the position of the operator in the cell.

2021

Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System

Autores
Santos, LC; dos Santos, FN; Morais, R; Duarte, C;

Publicação
AGRONOMY-BASEL

Abstract
Sap flow measurements of trees are today the most common method to determine evapotranspiration at the tree and the forest/crop canopy level. They provide independent measurements for flux comparisons and model validation. The most common approach to measure the sap flow is based on intrusive solutions with heaters and thermal sensors. This sap flow sensor technology is not very reliable for more than one season crop; it is intrusive and not adequate for low diameter trunk trees. The non-invasive methods comprise mostly Radio-frequency (RF) technologies, typically using satellite or air-born sources. This system can monitor large fields but cannot measure sap levels of a single plant (precision agriculture). This article studies the hypothesis to use of RF signals attenuation principle to detect variations in the quantity of water present in a single plant. This article presents a well-defined experience to measure water content in leaves, by means of high gains RF antennas, spectrometer, and a robotic arm. Moreover, a similar concept is studied with an off-the-shelf radar solution-for the automotive industry-to detect changes in the water presence in a single plant and leaf. The conclusions indicate a novel potential application of this technology to precision agriculture as the experiments data is directly related to the sap flow variations in plant.

2021

A Camera to LiDAR calibration approach through the optimization of atomic transformations

Autores
de Aguiar, ASP; de Oliveira, MAR; Pedrosa, EF; dos Santos, FBN;

Publicação
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
This paper proposes a camera-to-3D Light Detection And Ranging calibration framework through the optimization of atomic transformations. The system is able to simultaneously calibrate multiple cameras with Light Detection And Ranging sensors, solving the problem of Bundle. In comparison with the state-of-the-art, this work presents several novelties: the ability to simultaneously calibrate multiple cameras and LiDARs; the support for multiple sensor modalities; the calibration through the optimization of atomic transformations, without changing the topology of the input transformation tree; and the integration of the calibration framework within the Robot Operating System (ROS) framework. The software pipeline allows the user to interactively position the sensors for providing an initial estimate, to label and collect data, and visualize the calibration procedure. To test this framework, an agricultural robot with a stereo camera and a 3D Light Detection And Ranging sensor was used. Pairwise calibrations and a single calibration of the three sensors were tested and evaluated. Results show that the proposed approach produces accurate calibrations when compared to the state-of-the-art, and is robust to harsh conditions such as inaccurate initial guesses or small amount of data used in calibration. Experiments have shown that our optimization process can handle an angular error of approximately 20 degrees and a translation error of 0.5 meters, for each sensor. Moreover, the proposed approach is able to achieve state-of-the-art results even when calibrating the entire system simultaneously.

2021

Point-of-care Vis-SWNIR spectroscopy towards reagent-less hemogram analysis

Autores
Barroso, TG; Ribeiro, L; Gregorio, H; Santos, F; Martins, RC;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
Current chemometrics and artificial intelligence methods are unable to deal with complex multi-scale interference of blood constituents in visible shortwave near-infrared spectroscopy point-of-care technologies. The major difficulty is to access the rich information in the spectroscopy signal, unscrambling and interpreting spectral interference to provide analytical quality quantifications. We present a new self-learning artificial intelligence method for spectral processing based on the search of covariance modes with direct correspondence to the BeerLambert law. Dog and cat hemograms were analyzed by impedance flow cytometry and standard laboratory methods (erythrocytes counts, hemoglobin, and hematocrit). Spectral records were performed for the same samples. The methodology was benchmarked against state-of-the-art chemometrics: a multivariate linear model of hemoglobin bands, similarity, partial least squares, local partial least squares, and artificial neural networks. The new method outperforms the state-of-the-art, providing analytical quality quantifications according to desired veterinary pathology guidelines (total errors of 1.69% to 7.14%), whereas chemometric methods cannot. The method finds relevant samples and spectral information that hold the quantitative information for a particular interference mode, in contrast to the current methods that do not hold a relationship with the BeerLambert law. It allows the interpretation of interference bands used in quantification, providing the capacity to determine if the composition of an unknown sample is predictable. This research is especially relevant for improving current optical point-of-care technologies that are affected by spectral interference and moving towards micro-sampling and reagent-less technologies in healthcare and veterinary medicine diagnosis.

2021

A Case Study on Improving the Software Dependability of a ROS Path Planner for Steep Slope Vineyards

Autores
Santos, LC; Santos, A; Santos, FN; Valente, A;

Publicação
ROBOTICS

Abstract
Software for robotic systems is becoming progressively more complex despite the existence of established software ecosystems like ROS, as the problems we delegate to robots become more and more challenging. Ensuring that the software works as intended is a crucial (but not trivial) task, although proper quality assurance processes are rarely seen in the open-source robotics community. This paper explains how we analyzed and improved a specialized path planner for steep-slope vineyards regarding its software dependability. The analysis revealed previously unknown bugs in the system, with a relatively low property specification effort. We argue that the benefits of similar quality assurance processes far outweigh the costs and should be more widespread in the robotics domain.

  • 78
  • 335