2020
Autores
Oliveira, SP; Pinto, JR; Goncalves, T; Canas Marques, R; Cardoso, MJ; Oliveira, HP; Cardoso, JS;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Human epidermal growth factor receptor 2 (HER2) evaluation commonly requires immunohistochemistry (IHC) tests on breast cancer tissue, in addition to the standard haematoxylin and eosin (H&E) staining tests. Additional costs and time spent on further testing might be avoided if HER2 overexpression could be effectively inferred from H&E stained slides, as a preliminary indication of the IHC result. In this paper, we propose the first method that aims to achieve this goal. The proposed method is based on multiple instance learning (MIL), using a convolutional neural network (CNN) that separately processes H&E stained slide tiles and outputs an IHC label. This CNN is pretrained on IHC stained slide tiles but does not use these data during inference/testing. H&E tiles are extracted from invasive tumour areas segmented with the HASHI algorithm. The individual tile labels are then combined to obtain a single label for the whole slide. The network was trained on slides from the HER2 Scoring Contest dataset (HER2SC) and tested on two disjoint subsets of slides from the HER2SC database and the TCGA-TCIA-BRCA (BRCA) collection. The proposed method attained83.3%classification accuracy on the HER2SC test set and 53.8% on the BRCA test set. Although further efforts should be devoted to achieving improved performance, the obtained results are promising, suggesting that it is possible to perform HER2 overexpression classification on H&E stained tissue slides.
2020
Autores
Silva, F; Pereira, T; Frade, J; Mendes, J; Freitas, C; Hespanhol, V; Luis Costa, JL; Cunha, A; Oliveira, HP;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Lung cancer late diagnosis has a large impact on the mortality rate numbers, leading to a very low five-year survival rate of 5%. This issue emphasises the importance of developing systems to support a diagnostic at earlier stages. Clinicians use Computed Tomography (CT) scans to assess the nodules and the likelihood of malignancy. Automatic solutions can help to make a faster and more accurate diagnosis, which is crucial for the early detection of lung cancer. Convolutional neural networks (CNN) based approaches have shown to provide a reliable feature extraction ability to detect the malignancy risk associated with pulmonary nodules. This type of approach requires a massive amount of data to model training, which usually represents a limitation in the biomedical field due to medical data privacy and security issues. Transfer learning (TL) methods have been widely explored in medical imaging applications, offering a solution to overcome problems related to the lack of training data publicly available. For the clinical annotations experts with a deep understanding of the complex physiological phenomena represented in the data are required, which represents a huge investment. In this direction, this work explored a TL method based on unsupervised learning achieved when training a Convolutional Autoencoder (CAE) using images in the same domain. For this, lung nodules from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) were extracted and used to train a CAE. Then, the encoder part was transferred, and the malignancy risk was assessed in a binary classification-benign and malignant lung nodules, achieving an Area Under the Curve (AUC) value of 0.936. To evaluate the reliability of this TL approach, the same architecture was trained from scratch and achieved an AUC value of 0.928. The results reported in this comparison suggested that the feature learning achieved when reconstructing the input with an encoder-decoder based architecture can be considered an useful knowledge that might allow overcoming labelling constraints.
2020
Autores
Gouveia, P; Bessa, S; Oliveira, H; Batista, E; Aleluia, M; Ip, J; Costa, J; Nuno, L; Pinto, D; Mavioso, C; Anacleto, J; Abreu, N; Morgado, P; Martinho, M; Teixeira, J; Carvalho, P; Cardoso, J; Alves, C; Cardoso, F; Cardoso, MJ;
Publicação
EUROPEAN JOURNAL OF CANCER
Abstract
2020
Autores
Pinto, D; Mavioso, C; Araujo, RJ; Oliveira, HP; Anacleto, JC; Vasconcelos, MA; Gouveia, P; Abreu, N; Alves, C; Cardoso, JS; Cardoso, MJ; Cardoso, F;
Publicação
EUROPEAN JOURNAL OF CANCER
Abstract
2020
Autores
BESSA, S; TEIXEIRA, JF; CARVALHO, PH; GOUVEIA, PF; OLIVEIRA, HP;
Publicação
Proceedings of 3DBODY.TECH 2020 - 11th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Online/Virtual, 17-18 November 2020
Abstract
2021
Autores
Pereira, T; Freitas, C; Costa, JL; Morgado, J; Silva, F; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Hespanhol, V; Cunha, A; Oliveira, HP;
Publicação
JOURNAL OF CLINICAL MEDICINE
Abstract
Lung cancer is still the leading cause of cancer death in the world. For this reason, novel approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD) can be an interesting option for a noninvasive tumour characterisation based on thoracic computed tomography (CT) image analysis. Until now, radiomics have been focused on tumour features analysis, and have not considered the information on other lung structures that can have relevant features for tumour genotype classification, especially for epidermal growth factor receptor (EGFR), which is the mutation with the most successful targeted therapies. With this perspective paper, we aim to explore a comprehensive analysis of the need to combine the information from tumours with other lung structures for the next generation of CADs, which could create a high impact on targeted therapies and personalised medicine. The forthcoming artificial intelligence (AI)-based approaches for lung cancer assessment should be able to make a holistic analysis, capturing information from pathological processes involved in cancer development. The powerful and interpretable AI models allow us to identify novel biomarkers of cancer development, contributing to new insights about the pathological processes, and making a more accurate diagnosis to help in the treatment plan selection.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.