Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Hélder Filipe Oliveira

2024

CNN-based Methods for Survival Prediction using CT images for Lung Cancer Patients

Autores
Amaro, M; Oliveira, HP; Pereira, T;

Publicação
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024

Abstract
Lung Cancer (LC) is still among the top main causes of death worldwide, and it is the leading death number among other cancers. Several AI-based methods have been developed for the early detection of LC, trying to use Computed Tomography (CT) images to identify the initial signs of the disease. The survival prediction could help the clinicians to adequate the treatment plan and all the proceedings, by the identification of the most severe cases that need more attention. In this study, several deep learning models were compared to predict the survival of LC patients using CT images. The best performing model, a CNN with 3 layers, achieved an AUC value of 0.80, a Precision value of 0.56 and a Recall of 0.64. The obtained results showed that CT images carry information that can be used to assess the survival of LC.

2025

Causal representation learning through higher-level information extraction

Autores
Silva, F; Oliveira, HP; Pereira, T;

Publicação
ACM COMPUTING SURVEYS

Abstract
The large gap between the generalization level of state-of-the-art machine learning and human learning systems calls for the development of artificial intelligence (AI) models that are truly inspired by human cognition. In tasks related to image analysis, searching for pixel-level regularities has reached a power of information extraction still far from what humans capture with image-based observations. This leads to poor generalization when even small shifts occur at the level of the observations. We explore a perspective on this problem that is directed to learning the generative process with causality-related foundations, using models capable of combining symbolic manipulation, probabilistic reasoning, and pattern recognition abilities. We briefly review and explore connections of research from machine learning, cognitive science, and related fields of human behavior to support our perspective for the direction to more robust and human-like artificial learning systems.

2024

CONVERGE: A Vision-Radio Research Infrastructure Towards 6G and Beyond

Autores
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;

Publicação
2024 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT 2024

Abstract
Telecommunications and computer vision have evolved separately so far. Yet, with the shift to sub-terahertz (sub-THz) and terahertz (THz) radio communications, there is an opportunity to explore computer vision technologies together with radio communications, considering the dependency of both technologies on Line of Sight. The combination of radio sensing and computer vision can address challenges such as obstructions and poor lighting. Also, machine learning algorithms, capable of processing multimodal data, play a crucial role in deriving insights from raw and low-level sensing data, offering a new level of abstraction that can enhance various applications and use cases such as beamforming and terminal handovers. This paper introduces CONVERGE, a pioneering vision-radio paradigm that bridges this gap by leveraging Integrated Sensing and Communication (ISAC) to facilitate a dual View-to-Communicate, Communicate-to-View approach. CONVERGE offers tools that merge wireless communications and computer vision, establishing a novel Research Infrastructure (RI) that will be open to the scientific community and capable of providing open datasets. This new infrastructure will support future research in 6G and beyond concerning multiple verticals, such as telecommunications, automotive, manufacturing, media, and health.

2024

Exploring the differences between Multi-task and Single-task with the use of hxplainable AI for lung nodule classification

Autores
Fernandes, L; Pereira, T; Oliveira, HP;

Publicação
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024

Abstract
Currently, lung cancer is one of the deadliest diseases that affects millions of people globally. However, Artificial Intelligence is being increasingly integrated with healthcare practices, with the goal to aid in the early diagnosis of lung cancer. Although such methods have shown very promising results, they still lack transparency to the user, which consequently could make their generalised adoption a challenging task. Therefore, in this work we explore the use of post-hoc explainable methods, to better understand the inner-workings of an already established multitasking framework that executes the segmentation and the classification task of lung nodules simultaneously. The idea behind such study is to understand how a multitasking approach impacts the model's performance in the lung nodule classification task when compared to single-task models. Our results show that the multitasking approach works as an attention mechanism by aiding the model to learn more meaningful features. Furthermore, the multitasking framework was able to achieve a better performance in regard to the explainability metric, with an increase of 7% when compared to our baseline, and also during the classification and segmentation task, with an increase of 4.84% and 15.03%; for each task respectively, when also compared to the studied baselines.

2025

Markerless multi-view 3D human pose estimation: A survey

Autores
Nogueira, AFR; Oliveira, HP; Teixeira, LF;

Publicação
IMAGE AND VISION COMPUTING

Abstract
3D human pose estimation aims to reconstruct the human skeleton of all the individuals in a scene by detecting several body joints. The creation of accurate and efficient methods is required for several real-world applications including animation, human-robot interaction, surveillance systems or sports, among many others. However, several obstacles such as occlusions, random camera perspectives, or the scarcity of 3D labelled data, have been hampering the models' performance and limiting their deployment in real-world scenarios. The higher availability of cameras has led researchers to explore multi-view solutions due to the advantage of being able to exploit different perspectives to reconstruct the pose. Most existing reviews focus mainly on monocular 3D human pose estimation and a comprehensive survey only on multi-view approaches to determine the 3D pose has been missing since 2012. Thus, the goal of this survey is to fill that gap and present an overview of the methodologies related to 3D pose estimation in multi-view settings, understand what were the strategies found to address the various challenges and also, identify their limitations. According to the reviewed articles, it was possible to find that most methods are fully-supervised approaches based on geometric constraints. Nonetheless, most of the methods suffer from 2D pose mismatches, to which the incorporation of temporal consistency and depth information have been suggested to reduce the impact of this limitation, besides working directly with 3D features can completely surpass this problem but at the expense of higher computational complexity. Models with lower supervision levels were identified to overcome some of the issues related to 3D pose, particularly the scarcity of labelled datasets. Therefore, no method is yet capable of solving all the challenges associated with the reconstruction of the 3D pose. Due to the existing trade-off between complexity and performance, the best method depends on the application scenario. Therefore, further research is still required to develop an approach capable of quickly inferring a highly accurate 3D pose with bearable computation cost. To this goal, techniques such as active learning, methods that learn with a low level of supervision, the incorporation of temporal consistency, view selection, estimation of depth information and multi-modal approaches might be interesting strategies to keep in mind when developing a new methodology to solve this task.

2025

AI-based models to predict decompensation on traumatic brain injury patients

Autores
Ribeiro, R; Neves, I; Oliveira, HP; Pereira, T;

Publicação
Comput. Biol. Medicine

Abstract
Traumatic Brain Injury (TBI) is a form of brain injury caused by external forces, resulting in temporary or permanent impairment of brain function. Despite advancements in healthcare, TBI mortality rates can reach 30%–40% in severe cases. This study aims to assist clinical decision-making and enhance patient care for TBI-related complications by employing Artificial Intelligence (AI) methods and data-driven approaches to predict decompensation. This study uses learning models based on sequential data from Electronic Health Records (EHR). Decompensation prediction was performed based on 24-h in-mortality prediction at each hour of the patient's stay in the Intensive Care Unit (ICU). A cohort of 2261 TBI patients was selected from the MIMIC-III dataset based on age and ICD-9 disease codes. Logistic Regressor (LR), Long-short term memory (LSTM), and Transformers architectures were used. Two sets of features were also explored combined with missing data strategies by imputing the normal value, data imbalance techniques with class weights, and oversampling. The best performance results were obtained using LSTMs with the original features with no unbalancing techniques and with the added features and class weight technique, with AUROC scores of 0.918 and 0.929, respectively. For this study, using EHR time series data with LSTM proved viable in predicting patient decompensation, providing a helpful indicator of the need for clinical interventions. © 2025 Elsevier Ltd

  • 23
  • 23