2018
Autores
Cardoso, MJ; Vrieling, C; Cardoso, JS; Oliveira, HP; Williams, NR; Dixon, JM; Gouveia, P; Keshtgar, M; Mosahebi, A; Bishop, D; Lacher, R; Liefers, GJ; Molenkamp, B; Van de Velde, C; Azevedo, I; Canny, R; Christie, D; Evans, A; Fitzal, F; Graham, P; Hamdi, M; Joahensen, J; Laws, S; Merck, B; Reece, G; Sacchini, V; Vrancken, MJ; Wilkinson, L; Matthes, GZ;
Publicação
BREAST
Abstract
Purpose: BCCT.core (Breast Cancer Conservative Treatment. cosmetic results) is a software created for the objective evaluation of aesthetic result of breast cancer conservative treatment using a single patient frontal photography. The lack of volume information has been one criticism, as the use of 3D information might improve accuracy in aesthetic evaluation. In this study, we have evaluated the added value of 3D information to two methods of aesthetic evaluation: a panel of experts; and an augmented version of the computational model - BCCT.core3d. Material and methods: Within the scope of EU Seventh Framework Programme Project PICTURE, 2D and 3D images from 106 patients from three clinical centres were evaluated by a panel of 17 experts and the BCCT.core. Agreement between all methods was calculated using the kappa (K) and weighted kappa (wK) statistics. Results: Subjective agreement between 2D and 3D individual evaluation was fair to moderate. The agreement between the expert classification and the BCCT.core software with both 2D and 3D features was also fair to moderate. Conclusions: The inclusion of 3D images did not add significant information to the aesthetic evaluation either by the panel or the software. Evaluation of aesthetic outcome can be performed using of the BCCT.core software, with a single frontal image.
2018
Autores
Oliveira, SP; Morgado, P; Gouveia, PF; Teixeira, JF; Bessa, S; Monteiro, JP; Zolfagharnasab, H; Reis, M; Silva, NL; Veiga, D; Cardoso, MJ; Oliveira, HP; Ferreira, MJ;
Publicação
Critical Reviews in Biomedical Engineering
Abstract
Breast cancer is one of the most common malignanciesaffecting women worldwide. However, despite its incidence trends have increased, the mortality rate has significantly decreased. The primary concern in any cancer treatment is the oncological outcome but, in the case of breast cancer, the surgery aesthetic result has become an important quality indicator for breast cancer patients. In this sense, an adequate surgical planning and prediction tool would empower the patient regarding the treatment decision process, enabling a better communication between the surgeon and the patient and a better understanding of the impact of each surgical option. To develop such tool, it is necessary to create complete 3D model of the breast, integrating both inner and outer breast data. In this review, we thoroughly explore and review the major existing works that address, directly or not, the technical challenges involved in the development of a 3D software planning tool in the field of breast conserving surgery. © 2018 by Begell House, Inc.
2019
Autores
S. Peixoto, P; Machado, A; P. Oliveira, H; A. Bordalo, A; A. Segundo, M;
Publicação
Environmental Biosensors [Working Title]
Abstract
2018
Autores
Pinheiro, G; Coelho, P; Salgado, M; Oliveira, HP; Cunha, A;
Publicação
PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)
Abstract
Endoscopic capsules are vitamin-sized devices that create 8 to 10 hour videos of the digestive tract. They are the leading diagnosing method for the small bowel, a region not easily accessible with traditional endoscopy techniques. However, these capsules do not provide localization information, even though it is crucial for the diagnosis, follow-ups and surgical interventions. Currently, the capsule localization is either estimated based on scarce gastrointestinal tract landmarks or given by additional hardware that causes discomfort to the patient and represents a cost increase. Current software methods show great potential, but still need to improve in order to overcome their limitations. In this work, a visual odometry method for capsule localization inside the small bowel is proposed.
2019
Autores
Araujo, RJ; Cardoso, JS; Oliveira, HP;
Publicação
IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II
Abstract
The segmentation of retinal vessels in fundus images has been heavily focused in the past years, given their relevance in the diagnosis of several health conditions. Even though the recent advent of deep learning allowed to foster the performance of computer-based algorithms in this task, further improvement concerning the detection of vessels while suppressing background noise has clinical significance. Moreover, the best performing state-of-the-art methodologies conduct patch-based predictions. This, put together with the preprocessing techniques used in those methodologies, may hinder their use in screening scenarios. Thus, in this paper, we explore a fully convolutional setting that takes raw fundus images and allows to combine patch-based training with global image prediction. Our experiments on the DRIVE, STARE and CHASEDB1 databases show that the proposed methodology achieves state-of-the-art performance in the first and the last, allowing at the same time much faster segmentation of new images.
2019
Autores
Araújo, RJ; Cardoso, JS; Oliveira, HP;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2019, PT II
Abstract
The enhancement of tubular structures such as vessels in medical images has been addressed in the past, aiming for easier extraction and or visualization of such structures by professionals. Some literature methodologies propose vesselness measures whose design is motivated by local properties of vascular networks and how these influence the eigenvalues of the Hessian matrix. However, past work fails to combine properly the scale-space and neighborhood information, thus leading to the proposal of suboptimal vesselness measures. In this paper, we show that a shallow convolutional neural network is able to learn more optimal embedding spaces from the eigenvalue analysis at different scales, thus leading to a stronger vessel enhancement. Additionally, we also show that such a system maintains one of the biggest advantages of Hessian-based vesselness measures, which is the robustness to data with varying statistics. © 2019, Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.