Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Gama

2023

Explainable Predictive Maintenance

Autores
Pashami, S; Nowaczyk, S; Fan, Y; Jakubowski, J; Paiva, N; Davari, N; Bobek, S; Jamshidi, S; Sarmadi, H; Alabdallah, A; Ribeiro, RP; Veloso, B; Mouchaweh, MS; Rajaoarisoa, LH; Nalepa, GJ; Gama, J;

Publicação
CoRR

Abstract

2023

Modeling Events and Interactions through Temporal Processes - A Survey

Autores
Liguori, A; Caroprese, L; Minici, M; Veloso, B; Spinnato, F; Nanni, M; Manco, G; Gama, J;

Publicação
CoRR

Abstract

2023

Towards federated learning: An overview of methods and applications

Autores
Silva, PR; Vinagre, J; Gama, J;

Publicação
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
Federated learning (FL) is a collaborative, decentralized privacy-preserving method to attach the challenges of storing data and data privacy. Artificial intelligence, machine learning, smart devices, and deep learning have strongly marked the last years. Two challenges arose in data science as a result. First, the regulation protected the data by creating the General Data Protection Regulation, in which organizations are not allowed to keep or transfer data without the owner's authorization. Another challenge is the large volume of data generated in the era of big data, and keeping that data in one only server becomes increasingly tricky. Therefore, the data is allocated into different locations or generated by devices, creating the need to build models or perform calculations without transferring data to a single location. The new term FL emerged as a sub-area of machine learning that aims to solve the challenge of making distributed models with privacy considerations. This survey starts by describing relevant concepts, definitions, and methods, followed by an in-depth investigation of federated model evaluation. Finally, we discuss three promising applications for further research: anomaly detection, distributed data streams, and graph representation.This article is categorized under:Technologies > Machine LearningTechnologies > Artificial Intelligence

2022

Contextualization for the Organization of Text Documents Streams

Autores
Sarmento, RP; Cardoso, DdO; Gama, J; Brazdil, P;

Publicação
CoRR

Abstract

2022

Federated Anomaly Detection over Distributed Data Streams

Autores
Silva, PR; Vinagre, J; Gama, J;

Publicação
CoRR

Abstract

2022

Open challenges for Machine Learning based Early Decision-Making research

Autores
Bondu, A; Achenchabe, Y; Bifet, A; Clérot, F; Cornuéjols, A; Gama, J; Hébrail, G; Lemaire, V; Marteau, PF;

Publicação
SIGKDD Explor.

Abstract

  • 82
  • 92