Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por João Gama

2020

Multi-label Stream Classification with Self-Organizing Maps

Autores
Cerri, R; Costa Júnior, JD; Faria Paiva, ERd; da Gama, JMP;

Publicação
CoRR

Abstract

2019

Contextual One-Class Classification in Data Streams

Autores
Moulton, RH; Viktor, HL; Japkowicz, N; Gama, J;

Publicação
CoRR

Abstract

2018

Dynamic Laplace: Efficient Centrality Measure for Weighted or Unweighted Evolving Networks

Autores
Cordeiro, M; Sarmento, RP; Brazdil, P; Gama, J;

Publicação
CoRR

Abstract

2016

SimTensor: A synthetic tensor data generator

Autores
T, HadiFanaee; Gama, Joao;

Publicação
CoRR

Abstract

2022

Turning the Tables: Biased, Imbalanced, Dynamic Tabular Datasets for ML Evaluation

Autores
Jesus, S; Pombal, J; Alves, D; Cruz, AF; Saleiro, P; Ribeiro, RP; Gama, J; Bizarro, P;

Publicação
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022

Abstract

2022

The MetroPT dataset for predictive maintenance

Autores
Veloso, B; Gama, J; Ribeiro, RP; Pereira, PM;

Publicação
SCIENTIFIC DATA

Abstract
The paper describes the MetroPT data set, an outcome of a Predictive Maintenance project with an urban metro public transportation service in Porto, Portugal. The data was collected in 2022 to develop machine learning methods for online anomaly detection and failure prediction. Several analog sensor signals (pressure, temperature, current consumption), digital signals (control signals, discrete signals), and GPS information (latitude, longitude, and speed) provide a framework that can be easily used and help the development of new machine learning methods. This dataset contains some interesting characteristics and can be a good benchmark for predictive maintenance models.

  • 83
  • 93