Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Ricardo Rocha

2018

Technical Communications of the 33rd International Conference on Logic Programming, ICLP 2017, August 28 to September 1, 2017, Melbourne, Australia

Autores
Rocha, R; Son, TC; Mears, C; Saeedloei, N;

Publicação
ICLP (Technical Communications)

Abstract

2018

On Extending a Fixed Size, Persistent and Lock-Free Hash Map Design to Store Sorted Keys

Autores
Areias, M; Rocha, R;

Publicação
2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS

Abstract
Searching is a crucial time-consuming part of many programs, and using a good search method instead of a bad one often leads to a substantial increase in performance. Hash tries are a trie-based data structure with nearly ideal characteristics for the implementation of hash maps. In this paper, we present a novel, simple and concurrent hash map design that fully supports the concurrent search, insert and remove operations on hash tries designed to store sorted keys. To the best of our knowledge, our design is the first concurrent hash map design that puts together the following characteristics: (i) use fixed size data structures; (ii) use persistent memory references; (iii) be lock-free; and (iv) store sorted keys. Experimental results show that our design is quite competitive when compared against other state-of-the-art designs implemented in Java.

2019

A Lock-Free Coalescing-Capable Mechanism for Memory Management

Autores
Leite, R; Rocha, R;

Publicação
PROCEEDINGS OF THE 2019 ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON MEMORY MANAGEMENT (ISMM '19)

Abstract
One common characteristic among current lock-free memory allocators is that they rely on the operating system to manage memory since they lack a lower-level mechanism capable of splitting and coalescing blocks of memory. In this paper, we discuss this problem and we propose a generic scheme for an efficient lock-free best-fit coalescing-capable mechanism that is able of satisfying memory allocation requests with desirable low fragmentation characteristics.

2018

LRMalloc: A Modern and Competitive Lock-Free Dynamic Memory Allocator

Autores
Leite, R; Rocha, R;

Publicação
High Performance Computing for Computational Science - VECPAR 2018 - 13th International Conference, São Pedro, Brazil, September 17-19, 2018, Revised Selected Papers

Abstract
This paper presents LRMalloc, a lock-free memory allocator that leverages lessons of modern memory allocators and combines them with a lock-free scheme. Current state-of-the-art memory allocators possess good performance but lack desirable lock-free properties, such as, priority inversion tolerance, kill-tolerance availability, and/or deadlock and livelock immunity. LRMalloc’s purpose is to show the feasibility of lock-free memory management algorithms, without sacrificing competitiveness in comparison to commonly used state-of-the-art memory allocators, especially for concurrent multithreaded applications. © 2019, Springer Nature Switzerland AG.

2019

Memory Reclamation Methods for Lock-Free Hash Tries

Autores
Moreno, P; Areias, M; Rocha, R;

Publicação
2019 31ST INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2019)

Abstract
Hash tries are a trie-based data structure with nearly ideal characteristics for the implementation of hash maps. Starting from a particular lock-free hash map data structure, named Lock-Free Hash Tries (LFHT), we focus on solving the problem of memory reclamation without losing the lock-freedom property. We propose an approach that explores the characteristics of the LFHT structure in order to achieve efficient memory reclamation with low and well-defined memory bounds. Experimental results show that our approach obtains better results when compared with other state-of-the-art memory reclamation methods and provides a competitive and scalable hash map implementation, if compared to lock-based implementations.

2020

A Compression-Based Design for Higher Throughput in a Lock-Free Hash Map

Autores
Moreno, P; Areias, M; Rocha, R;

Publicação
Euro-Par 2020: Parallel Processing - 26th International Conference on Parallel and Distributed Computing, Warsaw, Poland, August 24-28, 2020, Proceedings

Abstract
Lock-free implementation techniques are known to improve the overall throughput of concurrent data structures. A hash map is an important data structure used to organize information that must be accessed frequently. A key role of a hash map is the ability to balance workloads by dynamically adjusting its internal data structures in order to provide the fastest possible access to the information. This work extends a previous lock-free hash map design to also support lock-free compression. The main goal is to significantly reduce the depth of the internal hash levels within the hash map, in order to minimize cache misses and increase the overall throughput. To materialize our design, we redesigned the existent search, insert, remove and expand operations in order to maintain the lock-freedom property of the whole design. Experimental results show that lock-free compression effectively improves the search operation and, in doing so, it outperforms the previous design, which was already quite competitive when compared against the concurrent hash map design supported by Intel. © Springer Nature Switzerland AG 2020.

  • 7
  • 19