Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Paulo José Costa

2022

A realistic simulation environment as a teaching aid in educational robotics

Autores
Lima, J; Kalbermatter, RB; Braun, J; Brito, T; Berger, G; Costa, P;

Publicação
2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE)

Abstract
The experimental component is an essential method in Engineering education. Sometimes the availability of laboratories and components is compromised, and the COVID19 pandemic worsened the situation. Resorting to an accurate simulation seems to help this process by allowing students to develop the work, program, test, and validate it. Moreover, it lowers the development time and cost of the prototyping stages of a robotics project. As a multidisciplinary area, robotics requires simulation environments with essential characteristics, such as dynamics, connection to hardware (embedded systems), and other applications. Thus, this paper presents the Simulation environment of SimTwo, emphasizing previous publications with models of sensors, actuators, and simulation scenes. The simulator can be used for free, and the source code is available to the community. Proposed scenes and examples can inspire the development of other simulation scenes to be used in electrical and mechanical Engineering projects.

2023

Position Estimator for a Follow Line Robot: Comparison of Least Squares and Machine Learning Approaches

Autores
Matos, D; Mendes, J; Lima, J; Pereira, AI; Valente, A; Soares, S; Costa, P; Costa, P;

Publicação
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Navigation is one of the most important tasks for a mobile robot and the localisation is one of its main requirements. There are several types of localisation solutions such as LiDAR, Radio-frequency and acoustic among others. The well-known line follower has been a solution used for a long time ago and still remains its application, especially in competitions for young researchers that should be captivated to the scientific and technological areas. This paper describes two methodologies to estimate the position of a robot placed on a gradient line and compares them. The Least Squares and the Machine Learning methods are used and the results applied to a real robot allow to validate the proposed approach.

2023

Robot at Factory 4.0: An Auto-Referee Proposal Based on Artificial Vision

Autores
Ferreira, T; Braun, J; Lima, J; Pinto, VH; Santos, M; Costa, P;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
The robotization and automation of tasks are relevant processes and of great relevance to be considered nowadays. This work aims to turn the manual action of assigning the score for the robotic competition Robot at Factory 4.0 by an automatic referee. Specifically, the aim is to represent the real space in a set of computational information using computer vision, localization and mapping techniques. One of the crucial processes to achieve this goal involved the adaptive calibration of the parameters of a digital camera through visual references and tracking of objects, which resulted in a fully functional, robust and dynamic system that is capable of mapping the competition's objects accurately and correctly performing the referee's tasks.

2023

Robot at Factory Lite - A Step-by-Step Educational Approach to the Robot Assembly

Autores
Luiz, LE; Pilarski, L; Baidi, K; Braun, J; Oliveira, A; Lima, J; Costa, P;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
In a robotics scope, an excellent way to test and improve knowledge is through competitions. In other words, it is possible to follow the results in practice, compare them with the development of other teams and improve the current solutions. The Robot At Factory Lite proposal simulates an Industry 4.0 warehouse scenario, applying education through Science, Technology, Engineering, and Mathematics (STEM) methodology, where the participants have to work on a solution to overcome its challenges. Thus, this article presents an initial electromechanical proposal, which is the basis for developing robots for this competition. The presented main concepts aim to inform the possibilities of using the robot's parts and components. Thus, an idea can be sketched in the participants' minds, inspiring them to use their imagination and knowledge through the presentation of this model.

2023

Teaching Practical Robotics During the COVID-19 Pandemic: A Case Study on Regular and Hardware-in-the-Loop Simulations

Autores
Lima, J; Martins, FN; Costa, P;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
Laboratory experiments are important pedagogical tools in engineering courses. Restrictions related to the COVID-19 pandemic made it very difficult or impossible for laboratory classes to take place, resulting on a fast transition to simulation as an approach to guarantee the effectiveness of teaching. Simulation environments are powerful tools that can be adopted for remote classes and self-study. With these tools, students can perform experiments and, in some cases, make use of the laboratory facilities from outside of the University. This paper proposes and describes two free tools developed during the COVID-19 pandemic lock-down that allowed students to work from home, namely a set of simulation experiments and a Hardware-in-the-loop simulator, accessible 24/7. Two approaches in Python and C languages are presented, both in the context of Robotics courses for Engineering students. Successful results and student feedback indicate the effectiveness of the proposed approaches in institutions in Portugal and in the Netherlands.

2023

Data Acquisition Filtering Focused on Optimizing Transmission in a LoRaWAN Network Applied to the WSN Forest Monitoring System

Autores
Brito, T; Azevedo, BF; Mendes, J; Zorawski, M; Fernandes, FP; Pereira, AI; Rufino, J; Lima, J; Costa, P;

Publicação
SENSORS

Abstract
Developing innovative systems and operations to monitor forests and send alerts in dangerous situations, such as fires, has become, over the years, a necessary task to protect forests. In this work, a Wireless Sensor Network (WSN) is employed for forest data acquisition to identify abrupt anomalies when a fire ignition starts. Even though a low-power LoRaWAN network is used, each module still needs to save power as much as possible to avoid periodic maintenance since a current consumption peak happens while sending messages. Moreover, considering the LoRaWAN characteristics, each module should use the bandwidth only when essential. Therefore, four algorithms were tested and calibrated along real and monitored events of a wildfire. The first algorithm is based on the Exponential Smoothing method, Moving Averages techniques are used to define the other two algorithms, and the fourth uses the Least Mean Square. When properly combined, the algorithms can perform a pre-filtering data acquisition before each module uses the LoRaWAN network and, consequently, save energy if there is no necessity to send data. After the validations, using Wildfire Simulation Events (WSE), the developed filter achieves an accuracy rate of 0.73 with 0.5 possible false alerts. These rates do not represent a final warning to firefighters, and a possible improvement can be achieved through cloud-based server algorithms. By comparing the current consumption before and after the proposed implementation, the modules can save almost 53% of their batteries when is no demand to send data. At the same time, the modules can maintain the server informed with a minimum interval of 15 min and recognize abrupt changes in 60 s when fire ignition appears.

  • 21
  • 29