2026
Autores
Maia, F; Figueira, G; Neves-Moreira, F;
Publicação
COMPUTERS & OPERATIONS RESEARCH
Abstract
The stochastic dynamic inventory-routing problem (SDIRP) is a fundamental problem within supply chain operations that integrates inventory management and vehicle routing while handling the stochastic and dynamic nature of exogenous factors unveiled over time, such as customer demands, inventory supply and travel times. While practical applications require dynamic and stochastic decision-making, research in this field has only recently experienced significant growth, with most inventory-routing literature focusing on static variants. This paper reviews the current state of research on SDIRPs, identifying critical gaps and highlighting emerging trends in problem settings and decision policies. We extend the existing inventory-routing taxonomies by incorporating additional problem characteristics to better align models with real-world contexts. As a result, we highlight the need to account for further sources of uncertainty, multiple-supplier networks, perishability, multiple objectives, and pickup and delivery operations. We further categorize each study based on its policy design, investigating how different problem aspects shape decision policies. To conclude, we emphasize that large-scale and real-time problems require more attention and can benefit from decomposition approaches and learning-based methods.
2026
Autores
Beck, D; Morgado, L; O'Shea, P;
Publicação
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
Since the publication of the 2020 paper, Finding the Gaps About Uses of Immersive Learning Environments: A Survey of Surveys, the landscape of immersive learning environments (ILEs) has continued to evolve rapidly. This update aims to revisit the gaps identified in that previous research and explore emerging trends. We conducted an extensive review of new surveys published after that paper's cut date. Our findings reveal a significant amount of new published reviews (n = 64), more than doubling the original corpus (n = 47). The results highlighted novel themes of usage of immersive environments, helping bridge some 2020 research gaps. This paper discusses those developments and presents a consolidated perspective on the uses of immersive learning environments.
2026
Autores
Jardim, B; Santos, J; Barbosa, LS;
Publicação
SOFTWARE ENGINEERING AND FORMAL METHODS. SEFM 2024 COLLOCATED WORKSHOPS
Abstract
The staggered model is a recent, very general variant of discrete-time quantum walks which, avoiding the use of a coin to direct the walker evolution, explores the underlying graph structure to build an evolution operator based on local unitaries induced by adjacent vertices. Optimising their implementation to increase resilience to decoherence phenomena motivates their analysis with the ZX-calculus. The whole optimisation can be seen as a graph reconfiguration process along which the original circuit is rewrote, significantly reducing the number of (expensive) gates used. The exercise identified an underlying pattern leading to an alternative, potentially more efficient evolution operator.
2026
Autores
Cunha, J; Madeira, A; Barbosa, LS;
Publicação
SOFTWARE ENGINEERING AND FORMAL METHODS. SEFM 2024 COLLOCATED WORKSHOPS
Abstract
This paper introduces Paraconsistent Reactive Graphs, as an extension of Reactive graphs that incorporates paraconsistency into the ground edges to address vagueness and inconsistency within dynamic systems. By assigning pairs of truth values to ground edges, this framework captures the uncertainty and contradictions stemming from incomplete or conflicting information. We explore the semantics of these graphs and provide a practical example to illustrate the proposed approach.
2026
Autores
Lourenço, CB; Pinto, JS;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
In this paper, we introduce a novel approach for rigorously verifying safety properties of state machine specifications. Our method leverages an auto-active verifier and centers around the use of action functions annotated with contracts. These contracts facilitate inductive invariant checking, ensuring correctness during system execution. Our approach is further supported by the Why3-do library, which extends the Why3 tool's capabilities to verify concurrent and distributed algorithms using state machines. Two distinctive features of Why3-do are: (i) it supports specification refinement through refinement mappings, enabling hierarchical reasoning about distributed algorithms; and (ii) it can be easily extended to make verifying specific classes of systems more convenient. In particular, the library contains models allowing for message-passing algorithms to be described with programmed handlers, assuming different network semantics. A gallery of examples, all verified with Why3 using SMT solvers as proof tools, is also described in the paper. It contains several auto-actively verified concurrent and distributed algorithms, including the Paxos consensus algorithm.
2026
Autores
Gutiérrez-Tobal, GC; Gomez-Pilar, J; Ferreira-Santos, D; Pereira-Rodrigues, P; Alvarez, D; del Campo, F; Gozal, D; Hornero, R;
Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE
Abstract
Background and objectives: Timely treatment of pediatric obstructive sleep apnea (OSA) can prevent or reverse neurocognitive and cardiovascular morbidities. However, whether distinct phenotypes exist and account for divergent treatment effectiveness remains unknown. In this study, our goal is threefold: i) to define new data-driven pediatric OSA phenotypes, ii) to evaluate possible treatment effectiveness differences among them, and iii) to assess phenotypic information in predicting OSA resolution. Methods: We involved 22 sociodemographic, anthropometric, and clinical data from 464 children (5-10 years old) from the Childhood Adenotonsillectomy Trial (CHAT) database. Baseline information was used to automatically define pediatric OSA phenotypes using a new unsupervised subject-based association network. Follow-up data (7 months later) were used to evaluate the effects of the therapeutic intervention in terms of changes in the obstructive apnea-hypopnea index (OAHI) and the resolution of OSA (OAHI < 1 event per hour). An explainable artificial intelligence (XAI) approach was also developed to assess phenotypic information as OSA resolution predictor at baseline. Results: Our approach identified three OSA phenotypes (PHOSA1-PHOSA3), with PHOSA2 showing significantly lower odds of OSA recovery than PHOSA1 and PHOSA3 when treatment information was not considered (odds ratios, OR: 1.64 and 1.66, 95 % confidence intervals, CI: 1.03-2.62 and 1.01-2.69, respectively). The odds of OSA recovery were also significantly lower in PHOSA2 than in PHOSA3 when adenotonsillectomy was adopted as treatment (OR: 2.60, 95 % CI: 1.26-5.39). Our XAI approach identified 79.4 % (CI: 69.9-88.0 %) of children reaching OSA resolution after adenotonsillectomy, with a positive predictive value of 77.8 % (CI: 70.3 %-86.0 %). Conclusions: Our new subject-based association network successfully identified three clinically useful pediatric OSA phenotypes with different odds of therapeutic intervention effectiveness. Specifically, we found that children of any sex, >6 years old, overweight or obese, and with enlarged neck and waist circumference (PHOSA2) have less odds of recovering from OSA. Similarly, younger female children with no enlarged neck (PHOSA3) have higher odds of benefiting from adenotonsillectomy.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.