2025
Autores
Patrício, C; Teixeira, LF; Neves, JC;
Publicação
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
Abstract
The main challenges hindering the adoption of deep learning-based systems in clinical settings are the scarcity of annotated data and the lack of interpretability and trust in these systems. Concept Bottleneck Models (CBMs) offer inherent interpretability by constraining the final disease prediction on a set of human-understandable concepts. However, this inherent interpretability comes at the cost of greater annotation burden. Additionally, adding new concepts requires retraining the entire system. In this work, we introduce a novel two-step methodology that addresses both of these challenges. By simulating the two stages of a CBM, we utilize a pretrained Vision Language Model (VLM) to automatically predict clinical concepts, and an off-the-shelf Large Language Model (LLM) to generate disease diagnoses grounded on the predicted concepts. Furthermore, our approach supports test-time human intervention, enabling corrections to predicted concepts, which improves final diagnoses and enhances transparency in decision-making. We validate our approach on three skin lesion datasets, demonstrating that it outperforms traditional CBMs and state-of-the-art explainable methods, all without requiring any training and utilizing only a few annotated examples. The code is available at https://github.com/CristianoPatricio/2step-concept-based-skin-diagnosis.
2025
Autores
Cruz, RPM; Cristino, R; Cardoso, JS;
Publicação
IEEE ACCESS
Abstract
Semantic segmentation consists of predicting a semantic label for each image pixel. While existing deep learning approaches achieve high accuracy, they often overlook the ordinal relationships between classes, which can provide critical domain knowledge (e.g., the pupil lies within the iris, and lane markings are part of the road). This paper introduces novel methods for spatial ordinal segmentation that explicitly incorporate these inter-class dependencies. By treating each pixel as part of a structured image space rather than as an independent observation, we propose two regularization terms and a new metric to enforce ordinal consistency between neighboring pixels. Two loss regularization terms and one metric are proposed for structural ordinal segmentation, which penalizes predictions of non-ordinal adjacent classes. Five biomedical datasets and multiple configurations of autonomous driving datasets demonstrate the efficacy of the proposed methods. Our approach achieves improvements in ordinal metrics and enhances generalization, with up to a 15.7% relative increase in the Dice coefficient. Importantly, these benefits come without additional inference time costs. This work highlights the significance of spatial ordinal relationships in semantic segmentation and provides a foundation for further exploration in structured image representations.
2025
Autores
Baccega, D; Aguilar, J; Baquero, C; Fernández Anta, A; Ramirez, JM;
Publicação
Abstract
2025
Autores
Ribeiro, R; Neves, I; Oliveira, HP; Pereira, T;
Publicação
Comput. Biol. Medicine
Abstract
Traumatic Brain Injury (TBI) is a form of brain injury caused by external forces, resulting in temporary or permanent impairment of brain function. Despite advancements in healthcare, TBI mortality rates can reach 30%–40% in severe cases. This study aims to assist clinical decision-making and enhance patient care for TBI-related complications by employing Artificial Intelligence (AI) methods and data-driven approaches to predict decompensation. This study uses learning models based on sequential data from Electronic Health Records (EHR). Decompensation prediction was performed based on 24-h in-mortality prediction at each hour of the patient's stay in the Intensive Care Unit (ICU). A cohort of 2261 TBI patients was selected from the MIMIC-III dataset based on age and ICD-9 disease codes. Logistic Regressor (LR), Long-short term memory (LSTM), and Transformers architectures were used. Two sets of features were also explored combined with missing data strategies by imputing the normal value, data imbalance techniques with class weights, and oversampling. The best performance results were obtained using LSTMs with the original features with no unbalancing techniques and with the added features and class weight technique, with AUROC scores of 0.918 and 0.929, respectively. For this study, using EHR time series data with LSTM proved viable in predicting patient decompensation, providing a helpful indicator of the need for clinical interventions. © 2025 Elsevier Ltd
2025
Autores
Martins, AR; Ferreira, MC; Fernandes, CS;
Publicação
International Journal of Medical Informatics
Abstract
2025
Autores
Martins, AR; Ferreira, MC; Fernandes, CS;
Publicação
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS
Abstract
Purpose:To synthesizethe availableevidenceaboutthe use of HealthInformationTechnology(HIT)to supportpatientsduringhemodialysis.Methods:TheJoannaBriggsInstitute's methodologicalguidelinesfor scopingreviewsandthe PRISMA-ScRchecklistwereemployed.BibliographicsearchesacrossMEDLINE (R), CINAHL (R), PsychologyandBehavioralSciencesCollection,Scopus,MedicLatina,and Cochraneyielded932 records.Results:Eighteenstudiespublishedbetween2003and2023wereincluded.Theyexploreda rangeof HITs,includingvirtualreality,exergames,websites,and mobileapplications,all specificallydevelopedfor use duringthe intradialyticperiod.Conclusion:Thisstudyhighlightsthe HITsdevelopedfor use duringhemodialysistreatment,supportingphysicalexercise,diseasemanagement,and enhancementof self-efficacyand self-care.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.