2024
Autores
Pereira, MI; Pinto, AM;
Publicação
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Abstract
Autonomous Surface Vehicles (ASVs) are bound to play a fundamental role in the maintenance of offshore wind farms. Robust navigation for inspection vehicles should take into account the operation of docking within a harbouring structure, which is a critical and still unexplored maneuver. This work proposes an end-to-end docking approach for ASVs, based on Reinforcement Learning (RL), which teaches an agent to tackle collision- free navigation towards a target pose that allows the berthing of the vessel. The developed research presents a methodology that introduces the concept of illegal actions to facilitate the vessel's exploration during the learning process. This method improves the adopted Actor-Critic (AC) framework by accelerating the agent's optimization by approximately 38.02%. A set of comprehensive experiments demonstrate the accuracy and robustness of the presented method in scenarios with simulated environmental constraints (Beaufort Scale and Douglas Sea Scale), and a diversity of docking structures. Validation with two different real ASVs in both controlled and real environments demonstrates the ability of this method to enable safe docking maneuvers without prior knowledge of the scenario.
2024
Autores
Rodrigues, C; Correia, M; Abrantes, J; Rodrigues, M; Nadal, J;
Publicação
2024 IEEE 22nd Mediterranean Electrotechnical Conference, MELECON 2024
Abstract
This study presents variability assessment of real time measurements from in-vivo internal joint loads with instrumented implant during post-operative (PO) recovery process from total hip arthroplasty on daily living gait activities. A total of 112 trials walking supported by crutches in both hands, contralateral and ipsilateral sides, walking on treadmill at constant velocities, accelerating, decelerating and free walking, were assessed from 9 different patients ranging 0.3 to 76-month PO. Variability was assessed based on standard deviation of the vertical joint load normalized to each subject body weight with this metric adequacy to monitor PO recover. © 2024 IEEE.
2024
Autores
Paulino, D; Netto, AT; Brito, WAT; Paredes, H;
Publicação
ENG
Abstract
The current surge in the deployment of web applications underscores the need to consider users' individual preferences in order to enhance their experience. In response to this, an innovative approach is emerging that focuses on the detailed analysis of interaction data captured by web browsers. These data, which includes metrics such as the number of mouse clicks, keystrokes, and navigation patterns, offer insights into user behavior and preferences. By leveraging this information, developers can achieve a higher degree of personalization in web applications, particularly in the context of interactive elements such as online games. This paper presents the WebTraceSense project, which aims to pioneer this approach by developing a framework that encompasses a backend and frontend, advanced visualization modules, a DevOps cycle, and the integration of AI and statistical methods. The backend of this framework will be responsible for securely collecting, storing, and processing vast amounts of interaction data from various websites. The frontend will provide a user-friendly interface that allows developers to easily access and utilize the platform's capabilities. One of the key components of this framework is the visualization modules, which will enable developers to monitor, analyze, and interpret user interactions in real time, facilitating more informed decisions about user interface design and functionality. Furthermore, the WebTraceSense framework incorporates a DevOps cycle to ensure continuous integration and delivery, thereby promoting agile development practices and enhancing the overall efficiency of the development process. Moreover, the integration of AI methods and statistical techniques will be a cornerstone of this framework. By applying machine learning algorithms and statistical analysis, the platform will not only personalize user experiences based on historical interaction data but also infer new user behaviors and predict future preferences. In order to validate the proposed components, a case study was conducted which demonstrated the usefulness of the WebTraceSense framework in the creation of visualizations based on an existing dataset.
2024
Autores
Brito, C; Ferreira, P; Paulo, J;
Publicação
Abstract
2024
Autores
Loureiro, C; Filipe, V; Franco-Gonçalo, P; Pereira, AI; Colaço, B; Alves-Pimenta, S; Ginja, M; Gonçalves, L;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Radiography is the primary modality for diagnosing canine hip dysplasia (CHD), with visual assessment of radiographic features sometimes used for accurate diagnosis. However, these features typically constitute small regions of interest (ROI) within the overall image, yet they hold vital diagnostic information and are crucial for pathological analysis. Consequently, automated detection of ROIs becomes a critical preprocessing step in classification or segmentation systems. By correctly extracting the ROIs, the efficiency of retrieval and identification of pathological signs can be significantly improved. In this research study, we employed the most recent iteration of the YOLO (version 8) model to detect hip joints in a dataset of 133 pelvic radiographs. The best-performing model achieved a mean average precision (mAP50:95) of 0.81, indicating highly accurate detection of hip regions. Importantly, this model displayed feasibility for training on a relatively small dataset and exhibited promising potential for various medical applications.
2024
Autores
Castro-Martins, P; Pinto-Coelho, L; Campilho, RDSG;
Publicação
BIOENGINEERING-BASEL
Abstract
Diabetic foot is a serious complication that poses significant risks for diabetic patients. The resulting reduction in protective sensitivity in the plantar region requires early detection to prevent ulceration and ultimately amputation. The primary method employed for evaluating this sensitivity loss is the 10 gf Semmes-Weinstein monofilament test, commonly used as a first-line procedure. However, the lack of calibration in existing devices often introduces decision errors due to unreliable feedback. In this article, the mechanical behavior of a monofilament was analytically modeled, seeking to promote awareness of the impact of different factors on clinical decisions. Furthermore, a new device for the automation of the metrological evaluation of the monofilament is described. Specific testing methodologies, used for the proposed equipment, are also described, creating a solid base for the establishment of future calibration guidelines. The obtained results showed that the tested monofilaments had a very high error compared to the 10 gf declared by the manufacturers. To improve the precision and reliability of assessing the sensitivity loss, the frequent metrological calibration of the monofilament is crucial. The integration of automated verification, simulation capabilities, and precise measurements shows great promise for diabetic patients, reducing the likelihood of adverse outcomes.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.