2025
Autores
Oliveira, BB; Ahipasaoglu, SD;
Publicação
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
Balancing supply and demand in free-floating one-way carsharing systems is a critical operational challenge. This paper presents a novel approach that integrates a binary logit model into a mixed integer linear programming framework to optimize short-term pricing and fleet relocation. Demand modeling, based on a binary logit model, aggregates different trips under a unified utility model and improves estimation by incorporating information from similar trips. To speed up the estimation process, a categorizing approach is used, where variables such as location and time are classified into a few categories based on shared attributes. This is particularly beneficial for trips with limited observations as information gained from similar trips can be used for these trips effectively. The modeling framework adopts a dynamic structure where the binary logit model estimates demand using accumulated observations from past iterations at each decision point. This continuous learning environment allows for dynamic improvement in estimation and decision-making. At the core of the framework is a mathematical program that prescribes optimal levels of promotion and relocation. The framework then includes simulated market responses to the decisions, allowing for real-time adjustments to effectively balance supply and demand. Computational experiments demonstrate the effectiveness of the proposed approach and highlight its potential for real-world applications. The continuous learning environment, combining demand modeling and operational decisions, opens avenues for future research in transportation systems.
2025
Autores
Vilaça, L; Yu, Y; Viana, P;
Publicação
ACM COMPUTING SURVEYS
Abstract
Audio-visual correlation learning aims at capturing and understanding natural phenomena between audio and visual data. The rapid growth of Deep Learning propelled the development of proposals that process audio-visual data and can be observed in the number of proposals in the past years. Thus encouraging the development of a comprehensive survey. Besides analyzing the models used in this context, we also discuss some tasks of definition and paradigm applied in AI multimedia. In addition, we investigate objective functions frequently used and discuss how audio-visual data is exploited in the optimization process, i.e., the different methodologies for representing knowledge in the audio-visual domain. In fact, we focus on how human-understandable mechanisms, i.e., structured knowledge that reflects comprehensible knowledge, can guide the learning process. Most importantly, we provide a summarization of the recent progress of Audio-Visual Correlation Learning (AVCL) and discuss the future research directions.
2025
Autores
Guimarães, V; Nascimento, J; Viana, P; Carvalho, P;
Publicação
Applied Sciences
Abstract
2025
Autores
Bruno Lima; Rui Pinto;
Publicação
IEEE Sensors Reviews
Abstract
2025
Autores
Santo, LP; Bashford-Rogers, T; Barbosa, J; Navrátil, P;
Publicação
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Abstract
Rendering on conventional computers is capable of generating realistic imagery, but the computational complexity of these light transport algorithms is a limiting factor of image synthesis. Quantum computers have the potential to significantly improve rendering performance through reducing the underlying complexity of the algorithms behind light transport. This article investigates hybrid quantum-classical algorithms for ray tracing, a core component of most rendering techniques. Through a practical implementation of quantum ray tracing in a 3D environment, we show quantum approaches provide a quadratic improvement in query complexity compared to the equivalent classical approach. Based on domain specific knowledge, we then propose algorithms to significantly reduce the computation required for quantum ray tracing through exploiting image space coherence and a principled termination criteria for quantum searching. We show results obtained using a simulator for both Whitted style ray tracing, and for accelerating ray tracing operations when performing classical Monte Carlo integration for area lights and indirect illumination.
2025
Autores
César I.; Pereira I.; Rodrigues F.; Miguéis V.; Nicola S.; Madureira A.;
Publicação
Lecture Notes in Networks and Systems
Abstract
The effectiveness of digital marketing relies on the seamless integration of intelligent technology, enabling encounters that closely resemble those experienced with physical vendors in the real world. Thus, the importance of scalable artificial intelligence (AI) systems guided by a multimodal approach cannot be overstated, as they can be used to gain a deeper understanding of user preferences and engagement behaviors. The investigation conducted concerning multimodal learning in this review uncovers a variety of benefits and limitations on the available data, presenting consistency in finding the relationship between modalities. The results suggest multimodality as a topic with a noticeable dearth of research, yet a promising path to reduce uncertainty and develop innovative perspectives on decision-making for Digital Marketing improvement tasks. The complexity inherent in data processes like analysis, processing, and granular modulation requires a lot of effort for researchers to build accurate multimodal representations while trying to suppress imprecision in these new elements. Therefore, our approach aims to explore how theoretical foundations are successfully applied to learning operational procedures, considering real-life case comprehension, the technical challenges of the learning process, and the importance given to each feature. Even so, comparing the restrictions found in the state-of-the-art made possible the reformulation of limitations to this particular type of technology and encouraged the search for more guidelines on the entire process.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.