Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Design and Implementation of Scalable 6.5 GHz Reconfigurable Intelligent Surface for Wi-Fi 6E

Autores
Paulino, N; Ribeiro, FM; Outeiro, L; Lopes, PA; Inacio, S; Pessoa, LM;

Publicação
2025 19TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP

Abstract
Wi-Fi 6E will enable dense communications with low latency and high throughput, meeting the demands of ever growing network traffic and supporting emergent services such as ultra HD or multi-video streaming, and augmented or virtual reality. However, the 6GHz band suffers from higher path loss and signal attenuation, and poor performance in NLoS conditions. Reconfigurable Intelligent Surfaces (RISs) can address these challenges by providing low-cost directional communications with increased spectral and energy efficiency. However, RIS designs for the WiFi-6E range are under-explored in literature. We present the implementation of an 8x8 RIS tuned for 6.5GHz designed for scalability. We characterize the response of the unit cell, and evaluate the RIS in an anechoic chamber, measuring the far field radiation patterns for several digital beamsteering configurations in a horizontal plane, demonstrating effective signal steering.

2025

Sampling approaches to reduce very frequent seasonal time series

Autores
Baldo, A; Ferreira, PJS; Mendes Moreira, J;

Publicação
EXPERT SYSTEMS

Abstract
With technological advancements, much data is being captured by sensors, smartphones, wearable devices, and so forth. These vast datasets are stored in data centres and utilized to forge data-driven models for the condition monitoring of infrastructures and systems through future data mining tasks. However, these datasets often surpass the processing capabilities of traditional information systems and methodologies due to their significant size. Additionally, not all samples within these datasets contribute valuable information during the model training phase, leading to inefficiencies. The processing and training of Machine Learning algorithms become time-consuming, and storing all the data demands excessive space, contributing to the Big Data challenge. In this paper, we propose two novel techniques to reduce large time-series datasets into more compact versions without undermining the predictive performance of the resulting models. These methods also aim to decrease the time required for training the models and the storage space needed for the condensed datasets. We evaluated our techniques on five public datasets, employing three Machine Learning algorithms: Holt-Winters, SARIMA, and LSTM. The outcomes indicate that for most of the datasets examined, our techniques maintain, and in several instances enhance, the forecasting accuracy of the models. Moreover, we significantly reduced the time required to train the Machine Learning algorithms employed.

2025

Modeling Electricity Markets and Energy Systems: Challenges and Opportunities

Autores
Aliabadi, DE; Pinto, T;

Publicação
ENERGIES

Abstract
[No abstract available]

2025

Can Llama 3 Accurately Assess Readability? A Comparative Study Using Lead Sections from Wikipedia

Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;

Publicação
Research Challenges in Information Science - 19th International Conference, RCIS 2025, Seville, Spain, May 20-23, 2025, Proceedings, Part II

Abstract
Text readability is vital for effective communication and learning, especially for those with lower information literacy. This research aims to assess Llama 3’s ability to grade readability and compare its alignment with established metrics. For that purpose, we create a new dataset of article lead sections from English and Simple English Wikipedia, covering nine categories. The model is prompted to rate the readability of the texts on a grade-level scale, and an in-depth analysis of the results is conducted. While Llama 3 correlates strongly with most metrics, it may underestimate text grade levels. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

A Tight Security Proof for SPHINCS+, Formally Verified

Autores
Barbosa, M; Dupressoir, F; Hülsing, A; Meijers, M; Strub, PY;

Publicação
ADVANCES IN CRYPTOLOGY - ASIACRYPT 2024, PT IV

Abstract
SPHINCS+ is a post-quantum signature scheme that, at the time of writing, is being standardized as SLH-DSA. It is the most conservative option for post-quantum signatures, but the original tight proofs of security were flawed- as reported by Kudinov, Kiktenko and Fedorov in 2020. In this work, we formally prove a tight security bound for SPHINCS+ using the EasyCrypt proof assistant, establishing greater confidence in the general security of the scheme and that of the parameter sets considered for standardization. To this end, we reconstruct the tight security proof presented by Hulsing and Kudinov (in 2022) in a modular way. A small but important part of this effort involves a complex argument relating four different games at once, of a form not yet formalized in EasyCrypt (to the best of our knowledge). We describe our approach to overcoming this major challenge, and develop a general formal verification technique aimed at this type of reasoning. Enhancing the set of reusable EasyCrypt artifacts previously produced in the formal verification of stateful hash-based cryptographic constructions, we (1) improve and extend the existing libraries for hash functions and (2) develop new libraries for fundamental concepts related to hash-based cryptographic constructions, including Merkle trees. These enhancements, along with the formal verification technique we develop, further ease future formal verification endeavors in EasyCrypt, especially those concerning hash-based cryptographic constructions.

2025

<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision

Autores
Li, JN; Zhou, ZW; Yang, JC; Pepe, A; Gsaxner, C; Luijten, G; Qu, CY; Zhang, TZ; Chen, XX; Li, WX; Wodzinski, M; Friedrich, P; Xie, KX; Jin, Y; Ambigapathy, N; Nasca, E; Solak, N; Melito, GM; Vu, VD; Memon, AR; Schlachta, C; De Ribaupierre, S; Patel, R; Eagleson, R; Chen, XJ; Mächler, H; Kirschke, JS; de la Rosa, E; Christ, PF; Li, HB; Ellis, DG; Aizenberg, MR; Gatidis, S; Küstner, T; Shusharina, N; Heller, N; Andrearczyk, V; Depeursinge, A; Hatt, M; Sekuboyina, A; Löffler, MT; Liebl, H; Dorent, R; Vercauteren, T; Shapey, J; Kujawa, A; Cornelissen, S; Langenhuizen, P; Ben Hamadou, A; Rekik, A; Pujades, S; Boyer, E; Bolelli, F; Grana, C; Lumetti, L; Salehi, H; Ma, J; Zhang, Y; Gharleghi, R; Beier, S; Sowmya, A; Garza Villarreal, EA; Balducci, T; Angeles Valdez, D; Souza, R; Rittner, L; Frayne, R; Ji, Y; Ferrari, V; Chatterjee, S; Dubost, F; Schreiber, S; Mattern, H; Speck, O; Haehn, D; John, C; Nürnberger, A; Pedrosa, J; Ferreira, C; Aresta, G; Cunha, A; Campilho, A; Suter, Y; Garcia, J; Lalande, A; Vandenbossche, V; Van Oevelen, A; Duquesne, K; Mekhzoum, H; Vandemeulebroucke, J; Audenaert, E; Krebs, C; van Leeuwen, T; Vereecke, E; Heidemeyer, H; Röhrig, R; Hölzle, F; Badeli, V; Krieger, K; Gunzer, M; Chen, JX; van Meegdenburg, T; Dada, A; Balzer, M; Fragemann, J; Jonske, F; Rempe, M; Malorodov, S; Bahnsen, FH; Seibold, C; Jaus, A; Marinov, Z; Jaeger, PF; Stiefelhagen, R; Santos, AS; Lindo, M; Ferreira, A; Alves, V; Kamp, M; Abourayya, A; Nensa, F; Hörst, F; Brehmer, A; Heine, L; Hanusrichter, Y; Wessling, M; Dudda, M; Podleska, LE; Fink, MA; Keyl, J; Tserpes, K; Kim, MS; Elhabian, S; Lamecker, H; Zukic, D; Paniagua, B; Wachinger, C; Urschler, M; Duong, L; Wasserthal, J; Hoyer, PF; Basu, O; Maal, T; Witjes, MJH; Schiele, G; Chang, TC; Ahmadi, SA; Luo, P; Menze, B; Reyes, M; Deserno, TM; Davatzikos, C; Puladi, B; Fua, P; Yuille, AL; Kleesiek, J; Egger, J;

Publicação
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK

Abstract
Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing. Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing. Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.

  • 29
  • 4212