Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Network-secure aggregator operating regions with flexible dispatch envelopes in unbalanced systems

Autores
Russell, JS; Scott, P; Iria, J;

Publicação
Electric Power Systems Research

Abstract

2024

Brand Love, Attitude, and Environmental Cause Knowledge: Sustainable Blue Jeans Consumer Behavior

Autores
Magano, J; Brandao, T; Delgado, C; Vale, V;

Publicação
SUSTAINABILITY

Abstract
A blue jeans brand committed to the environmental cause could position itself as unique and socially responsible and attract environmentally driven consumers. This research study examines the relationship between brand love and consumers' environmental cause knowledge and their willingness to recommend and pay a premium for sustainable blue jeans. To this end, this cross-sectional study comprises a snowball convenience sample of 978 Portuguese respondents, whose data were collected from December 2022 to January 2023. Positive associations between self-expression, brand love, loyalty, environmental cause knowledge, positive word-of-mouth, and willingness to pay a premium for sustainable blue jeans stand out. There are differences in the willingness to pay a premium among generations, education levels, and consumers who are aware of sustainable line extensions and those who are not. The results may be helpful for brands, suggesting their communication should focus on creating increased proximity to consumers by enhancing their values and seeking to link their brands to intrinsic benefits and environmental stakes. This is the first study to incorporate knowledge of the environmental cause into a model linking brand love, brand loyalty, positive word-of-mouth, and willingness to pay a premium for sustainable blue jeans.

2024

Pruning End-Effectors State of the Art Review

Autores
Oliveira, F; Tinoco, V; Valente, A; Pinho, TM; Cunha, JB; Santos, F;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part I

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Chestnut Burr Segmentation for Yield Estimation Using UAV-Based Imagery and Deep Learning

Autores
Carneiro, GA; Santos, J; Sousa, JJ; Cunha, A; Pádua, L;

Publicação
DRONES

Abstract
Precision agriculture (PA) has advanced agricultural practices, offering new opportunities for crop management and yield optimization. The use of unmanned aerial vehicles (UAVs) in PA enables high-resolution data acquisition, which has been adopted across different agricultural sectors. However, its application for decision support in chestnut plantations remains under-represented. This study presents the initial development of a methodology for segmenting chestnut burrs from UAV-based imagery to estimate its productivity in point cloud data. Deep learning (DL) architectures, including U-Net, LinkNet, and PSPNet, were employed for chestnut burr segmentation in UAV images captured at a 30 m flight height, with YOLOv8m trained for comparison. Two datasets were used for training and to evaluate the models: one newly introduced in this study and an existing dataset. U-Net demonstrated the best performance, achieving an F1-score of 0.56 and a counting accuracy of 0.71 on the proposed dataset, using a combination of both datasets during training. The primary challenge encountered was that burrs often tend to grow in clusters, leading to unified regions in segmentation, making object detection potentially more suitable for counting. Nevertheless, the results show that DL architectures can generate masks for point cloud segmentation, supporting precise chestnut tree production estimation in future studies.

2024

Modelling and Control of a Trailer Sprayer for Precision Spraying

Autores
Baltazar, A; Santos, FN; Moreira, AP; Soares, SP; Reis, MJCS; Cunha, JB;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Precision spraying in agriculture is crucial for optimizing the application of pesticides while minimizing environmental impact. Despite significant advancements in control models for spraying systems, predictive control algorithms were not used. This paper addresses this gap by proposing a real-time control framework that integrates predictive control strategies to ensure consistent pressure output in a trailer sprayer. Based on information from various sensors, the framework anticipates and adapts to dynamic environmental conditions, enhancing accuracy and sustainability in spraying practices. A methodology is developed to define a proportional valve model. Based on this valve model, the predictive control model optimizes valve movements to minimize errors between predicted and reference pressures, thereby improving spraying efficiency. This study demonstrates the viability of predictive control in improving precision spraying systems applicable to autonomous robots, encouraging future advances in agricultural spraying technologies.

2024

Matter Protocol Integration Using Espressif's Solutions to Achieve Smart Home Interoperability

Autores
Mota, A; Serôdio, C; Valente, A;

Publicação
ELECTRONICS

Abstract
Smart home devices are becoming more popular over the years. A diverse range of appliances is being created, and Ambient Intelligence is growing in homes. However, there are various producers of these gadgets, different kinds of protocols, and diverse environments. The lack of interoperability reduces comfort of the user and turns into a barrier to smart home adoption. Matter is growing by constructing an open-source application layer protocol that can be compatible with all smart home ecosystems. In this article, a Matter overview is provided (namely, of the Commissioning stage), and a Matter Accessory using ESP32-S3 is developed referring to the manufacturer's SDKs and is inserted into an existent household ecosystem. Its behavior on the network is briefly analyzed, and interactions with the device are carried out. The simplicity of these tasks demonstrates accessibility for developers to create products, especially when it comes to firmware. Additionally, device commissioning and control are straightforward for the consumer. This capacity of gadget incorporation into diverse ecosystems using Matter is already on the market and might result in higher device production and enhanced smart home adoption.

  • 29
  • 4030