2025
Autores
Pinto, JR; Cardoso, S;
Publicação
Encyclopedia of Cryptography, Security and Privacy, Third Edition
Abstract
[No abstract available]
2025
Autores
Moço, H; Sousa, C; Ferreira, R; Pinto, P; Pereira, C; Diogo, R;
Publicação
INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS, IN4PL 2024, PT II
Abstract
Since supply chains have become complex and tracking a product's journey, from raw materials to the end of it's life has become more difficult. Consumers are demanding greater transparency about the materials origins and environmental impact of the products they buy. These new requirements, togeher with European Commission Green Deal strategy, lead to the concept of digital product passport (DPP). DPP could be seen as an instrument to boost circularity, however the DPP architecture and governance model still undefined and unclear. Data Governance in the context of the DPP acts as the backbone for ensuring accurate and reliable data within these passports or data models, leading to flawless traceability. This article approaches the DPPs and it's governance challenges, explaining how they function as digital repositories for a product's life cycle information and the concept of Data Governance. By understanding how these two concepts work together, we will explore a short use case within the footwear industry to show how DPP governance architecture might work in a distributed environment.
2025
Autores
Oliveira Coelho, BF; Cardoso, JS;
Publicação
Neurocomputing
Abstract
In order to facilitate the adoption of deep learning in areas where decisions are of critical importance, understanding the model's internal workings is paramount. Nevertheless, since most models are considered black boxes, this task is usually not trivial, especially when the user does not have access to the network's intermediate outputs. In this paper, we propose IBISA, a model-agnostic attribution method that reaches state-of-the-art performance by optimizing sampling masks using the Information Bottleneck Principle. Our method improves on the previously known RISE and IBA techniques by placing the bottleneck right after the image input without complex formulations to estimate the mutual information. The method also requires only twenty forward passes and ten backward passes through the network, which is significantly faster than RISE, which needs at least 4000 forward passes. We evaluated IBISA using a VGG-16 and a ResNET-50 model, showing that our method produces explanations comparable or superior to IBA, RISE, and Grad-CAM but much more efficiently. © 2025 The Authors
2025
Autores
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.
2025
Autores
Claro, RM; Neves, FSP; Pinto, AMG;
Publicação
Journal of Field Robotics
Abstract
The integration of precise landing capabilities into unmanned aerial vehicles (UAVs) is crucial for enabling autonomous operations, particularly in challenging environments such as the offshore scenarios. This work proposes a heterogeneous perception system that incorporates a multimodal fiducial marker, designed to improve the accuracy and robustness of autonomous landing of UAVs in both daytime and nighttime operations. This work presents ViTAL-TAPE, a visual transformer-based model, that enhance the detection reliability of the landing target and overcomes the changes in the illumination conditions and viewpoint positions, where traditional methods fail. VITAL-TAPE is an end-to-end model that combines multimodal perceptual information, including photometric and radiometric data, to detect landing targets defined by a fiducial marker with 6 degrees-of-freedom. Extensive experiments have proved the ability of VITAL-TAPE to detect fiducial markers with an error of 0.01 m. Moreover, experiments using the RAVEN UAV, designed to endure the challenging weather conditions of offshore scenarios, demonstrated that the autonomous landing technology proposed in this work achieved an accuracy up to 0.1 m. This research also presents the first successful autonomous operation of a UAV in a commercial offshore wind farm with floating foundations installed in the Atlantic Ocean. These experiments showcased the system's accuracy, resilience and robustness, resulting in a precise landing technology that extends mission capabilities of UAVs, enabling autonomous and Beyond Visual Line of Sight offshore operations. © 2025 Wiley Periodicals LLC.
2025
Autores
Santos, CS; Amorim-Lopes, M;
Publicação
BMC MEDICAL RESEARCH METHODOLOGY
Abstract
Background This scoping review systematically maps externally validated machine learning (ML)-based models in cancer patient care, quantifying their performance, and clinical utility, and examining relationships between models, cancer types, and clinical decisions. By synthesizing evidence, this study identifies, strengths, limitations, and areas requiring further research. Methods The review followed the Joanna Briggs Institute's methodology, Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines, and the Population, Concept, and Context mnemonic. Searches were conducted across Embase, IEEE Xplore, PubMed, Scopus, and Web of Science (January 2014-September 2022), targeting English-language quantitative studies in Q1 journals (SciMago Journal and Country Ranking > 1) that used ML to evaluate clinical outcomes for human cancer patients with commonly available data. Eligible models required external validation, clinical utility assessment, and performance metric reporting. Studies involving genetics, synthetic patients, plants, or animals were excluded. Results were presented in tabular, graphical, and descriptive form. Results From 4023 deduplicated abstracts and 636 full-text reviews, 56 studies (2018-2022) met the inclusion criteria, covering diverse cancer types and applications. Convolutional neural networks were most prevalent, demonstrating high performance, followed by gradient- and decision tree-based algorithms. Other algorithms, though underrepresented, showed promise. Lung and digestive system cancers were most frequently studied, focusing on diagnosis and outcome predictions. Most studies were retrospective and multi-institutional, primarily using image-based data, followed by text-based and hybrid approaches. Clinical utility assessments involved 499 clinicians and 12 tools, indicating improved clinician performance with AI assistance and superior performance to standard clinical systems. Discussion Interest in ML-based clinical decision-making has grown in recent years alongside increased multi-institutional collaboration. However, small sample sizes likely impacted data quality and generalizability. Persistent challenges include limited international validation across ethnicities, inconsistent data sharing, disparities in validation metrics, and insufficient calibration reporting, hindering model comparison reliability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.